ISSN (Online): 2812-9709
Vol.2, No.3, 2023: pp.96-104
THERMAL PROTECTION SOLUTION FOR SOLID FUEL ROCKET ENGINES
Authors:
Received: 20 June 2023
Revised: 1 September 2023
Accepted: 19 September 2023
Published: 30 September 2023
Abstract:
Keywords:
Thermal protection, thickness of coating, solid propellant rocket engine, rocket engine
References:
[1] T.A. Man’ko, K.V. Коzis, The Issues of Chemistry and Technologies of Resin Mixtures Fabrication for Internal Heat-Protective Coating of Rocket Solid Fuel Engine. Journal of Rocket – Space Technology, 27(4), 2019: 13-20.
https://doi.org/10.15421/451903
[2] M.G. Domingues, J.A.F.F, Rocco, High-temperature coating: hybrid rocket motor thermal protection case history. International Journal of Energetic Materials and Chemical Propulsion, 16(2), 2017: 165-174.
[3] L.F.S. Hoffmann, F.C.P. Bizarria, J.W.P, Bizarria, Applied algorithm in the liner inspection of solid rocket motors. Optics and Lasers in Engineering, 102, 2018: 143-153. https://doi.org/10.1016/j.optlaseng.2017.11.006
[4] R. Duval, A. Soufiani, J. Taine, Coupled Radiation and Turbulent Multiphase Flow in an Aluminised Solid Propellant Rocket Engine. Journal of Quantitative Spectroscopy & Radiative Transfer, 84(4), 2004: 513-526.
https://doi.org/10.1016/S0022-4073(03)00268-1
[5] D. Lemić, Geometrical influence on solid rocket propellant ignition. Scientific Technical Review, 56(3-4), 2006: 12-20.
[6] J.Y. Jung, M.Q. Brewster, Radiative Heat Transfer Analysis with Molten Al2O3 Dispersion in Solid Rocket Motors. Journal of Spacecraft and Rockets, 45(5), 2008: 1021-1030. https://doi.org/10.2514/1.30018
[7] Q. Ye, Y.-g. Yu, G., W.-f. Li, Study on cook-off behavior of HTPE propellant in solid rocket motor. Applied Thermal Engineering, 167 2020: 114798. https://doi.org/10.1016/j.applthermaleng.2019.114798
[8] V.T. Nguyen, D.S. Nguyen, External Ballistic Textbook. Military Technical Academy, Hanoi 2003. p.379. (in Vietnamese)
[9] R.C. Farmer, S.D. Smith, B.L. Myruski, Radiation from Advanced Solid Rocket Motor Plumes. NASA, NASA CR-196554 Final Report, 1994.
[10] D.V. Doan, V.V. Bien, M.A. Quang, N.M. Phu, A study on multi-body modeling and vibration analysis for twin-barrel gun while firing on elastic ground. Applied Engineering Letters, 8(1), 2023, 36-43. https://doi.org/10.18485/aeletters.2023.8.1.5
[11] T.N. Hai, T.N. Dung, Equipment with jet weapons. Military Technical Academy, Hanoi, 2016. (in Vietnamese).
[12] S.W. Baek, M.Y. Kim, Analysis of Radiative Heating of a Rocket Plume Base with the Finite-Volume Method. International Journal of Heat and Mass Transfer, 40(7), 1997: 1501-1508. https://doi.org/10.1016/S0017-9310(96)00257-8
[13] Q. Wu, J. Liu, Y. Jin, Y. Chen, L. Du, L.M. Waqas, Thickness measurement method for the thermal protection layer of a solid rocket motor based on a laser point cloud. Insight- Non-Destructive Testing and Condition Monitoring, 64(4), 219-228: 2022. https://doi.org/10.1784/insi.2022.64.4.219
[14] T.S. Ngo, S. Beer, V.V. Bien, P.D. Nguyen, P.M. Nguyen. Oscillation of the Anti-tank missile system Fagot fired on the Elastic ground. 2019 International Conference on Military Technologies (ICMT), 30-31 May 2019, Brno, Czech Republic. https://doi.org/10.1109/MILTECHS.2019.8870069
[15] A.M. Enew, A.M. Elfattah, S.R. Fouda, S.A. Hawash, Effect of aramid and carbon fibers with nano carbon particles on the mechanical properties of EPDM rubber thermal insulators for solid rocket motors application. Polymer Testing, 103, 2021: 107341. https://doi.org/10.1016/j.polymertesting.2021.107341
[16] A. Turchi, D. Bianchi, P. Thakre, F. Nasuti, V. Yang, Radiation and Roughness Effects on Nozzle Thermochemical Erosion in Solid Rocket Motors. Journal of Propulsion and Power, 30(2) 2014:314-324. https://doi.org/10.2514/1.B34997
[17] D. Bianchi, A. Neri, Numerical Simulation of Chemical Erosion in Vega Solid-Rocket-Motor Nozzles, Journal of Propulsion and Power, 34(2), 2018: 482–498. https://doi.org/10.2514/1.B36388
[18] T.H. Nguyen, M.P. Nguyen, Vibration of launcher on multiple launch rocket system BM-21 with the change of rocket’s mass center when fired. Journal of Science and Technique, 14(03), 2019. https://doi.org/10.56651/lqdtu.jst.v14.n03.443
[19] H.T. Martin, A.C. Cortopassi, K.K. Kuo, Assessment of the Performance of Ablative Insulators Under Realistic Solid Rocket Motor Operating Conditions. International Journal of Energetic Materials and Chemical Propulsion, 16(1), 2017: 1-22.
[20] Parry, D. L., and Brewster, M. Q., Optical Constants of Al2O3 Smoke in Propellant Flames. Journal of Thermophysics and Heat Transfer, 5(2), 1991: 142-149. https://doi.org/10.2514/3.241
[21] P.G. Cross, I.D. Boyd, Reduced Reaction Mechanism for Rocket Nozzle Ablation Simulations. Journal of Thermophysics and Heat Transfer, 32(2), 2018: 429-439. https://doi.org/10.2514/1.T5291
[22] M.P. Nguyen, T.H. Nguyen, V.B. Vo, Contour design for solid propellant rocket-engine nozzle. Journal of Science and Technology, 15(01), 2020: 13-22. https://doi.org/10.56651/lqdtu.jst.v15.n01.105
[23] F. Krejčíř, P. Konečný, PG-7V Ammunition as an Indirect Fire Threat, 2019 International Conference on Military Technologies (ICMT), 30-31 May 2019, Brno, Czech Republic, pp.1-4. https://doi.org/10.1109/MILTECHS.2019.8870046
[24] D.P. Nguyen, M.P. Nguyen, B.T. Phan, V.B. Vo, T.H. Nguyen, Study on the Influence of Some Structural Features of the Stabilizer Fins on the Stability of Unguided Rockets. 2023 International Conference on Military Technologies (ICMT), 23-26 May 2023, Brno, Czech Republic. https://doi.org/10.1109/ICMT58149.2023.10171280
[25] D.P. Nguyen, Researching the Effects of Some Initial Disturbance Factors on Firing Accuracy, PhD Thesis. Military Technical Academy, Hanoi, 2016. p.134. (in Vietnamese)
[26] H.B. Le, Konečný, P. Effect of Some Disturbance Factors on the Motion Stability of Unguided Rockets. Advances in Military Technology, 15(2), 2020: 405-423. https://doi.org/10.3849/aimt.01379
[27] E. Cavallini, F. Bernardo, A. Neri, Analysis and performance reconstruction of VEGA solid rocket motors qualification flights. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 28-30 July, 2014, Cleveland, USA.
https://doi.org/10.2514/6.2014-3805
[28] T.H. Nguyen B.V. Vo, Evaluation of the effect of the thrust deviation on the BM-21 launcher’s oscillation in a single volley. Journal of Science and Technology, 2016.
[29] P. Koněčný, Z. Křižan, Determination of black powder burning rate. Advances in Military Technology, 3(2), 2008, 11-18.
[30] F. Krejčíř, R. Buldra P. Konečný, Ignition of Small Rocket Motor Using Black Powder Igniters. 2021 International Conference on Military Technologies (ICMT), 8-11 June 2021, Brno, Czech Republic, pp.1-8.
https://doi.org/10.1109/ICMT52455.2021.9502780
© 2023 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)
How to Cite
N.M. Phu, V.V. Bien, N.T. Hai, Thermal Protection Solution for Solid Fuel Rocket Engines. Advanced Engineering Letters, 2(3), 2023: 96–104.
https://doi.org/10.46793/adeletters.2023.2.3.3
More Citation Formats
Phu, N.M., Van Bien V.V. & Hai. N.T. (2023). Thermal Protection Solution for Solid Fuel Rocket Engines. Advanced Engineering Letters, 2(3), 96–106. https://doi.org/10.46793/adeletters.2023.2.3.3
Nguyen Minh Phu, et al. “Thermal Protection Solution for Solid Fuel Rocket Engines.” Advanced Engineering Letters, vol. 2, no. 3, 2023, pp. 96–106, https://doi.org/10.46793/adeletters.2023.2.3.3.
Nguyen Minh Phu, Vo Van Bien, and Nguyen Thanh Hai. 2023. “Thermal Protection Solution for Solid Fuel Rocket Engines.” Advanced Engineering Letters 2 (3): 96–106. https://doi.org/10.46793/adeletters.2023.2.3.3.
Nguyen, M.P., Bien V.V. and Hai, N.T. (2023). Thermal Protection Solution for Solid Fuel Rocket Engines. Advanced Engineering Letters, 2(3), pp.96–106. doi: 10.46793/adeletters.2023.2.3.3.