Journal Menu
Last Edition
Journal information

Vol.2, No.4, 2023: pp.120-142

Recent advancement in nano cellulose as a biomass-based adsorbent for heavy metal ions removal: a review of a sustainable waste management approach


Mohamed N. Sanad1
, Mohamed Farouz1
, Mohamed M. ElFaham1,2

1Basic Engineering Sciences Department, Benha Faculty of Engineering, Benha University, Egypt
2Faculty of Computers and Artificial Intelligence, Alryada University for Science and Technology (RST),
Monofia, Egypt

Received: 13 October 2023
Revised: 30 November 2023
Accepted: 16 December 2023
Published: 31 December 2023


Rapid industrialization and unplanned urbanization have significantly increased environmental pollution. These human behaviors have resulted in massive waste discharges into the environment. As a result, organic and inorganic contaminants, including heavy metals, have accumulated in surface and groundwater. Heavy metals are highly carcinogenic and deadly. Heavy metal removal from drinking water has always been difficult. Conventional water treatment procedures could be more efficient, wasteful of energy, and generate massive amounts of harmful waste. In this initiative, researchers created a bio-based adsorption technology for removing heavy metal ions from polluted water. Nano celluloses (NCs) as biosorbents have sparked considerable attention due to their unique properties, such as the presence of several -OH groups on their surface, allowing the insertion of chemical moieties, a substantial specific surface area, strong mechanical properties, recyclability, and biodegradability. This review paper goes into great detail regarding the ways of producing Nano cellulose and its essential qualities. Many factors influence the use of NC- based adsorbents in water treatment systems, including synthesis pathways, functionalization of the surface, specific surface area, regeneration capacity, and reusability. Recent advances in bio-sorbent synthesis have prompted using bio-derived NC-based adsorbents in water treatment methods. This study also demonstrates that utilizing the potential for agricultural wastes, specifically sugarcane bagasse (SCB), as a precursor for Nano celluloses represents a sustainable approach, namely the conversion of low-value waste into a specific high-value product and its use in wastewater treatment.


Sugarcane bagasse, biosorption, nano celluloses, heavy metals, development


[1] K. Sardar, S. Ali, S. Hameed, S. Afzal, S. Fatima, M.B. Shakoor, S.A. Bharwana, H.M. Tauqeer, Heavy Metals Contamination and What are the Impacts on Living Organisms. Greener Journal of Environment Management and Public Safety, 2(4), 2013:172-179.
[2] N.K. Waghmare, S. Khan, Extraction and Characterization of Nano-cellulose Fibrils from Indian Sugarcane Bagasse- an Agro Waste. Journal of Natural Fibers, 19(13), 2022: 6230-6238.
[3] Y.C. Sharma, B. Singh, A. Agrawal, C.H. Weng, Removal of chromium by riverbed sand from water and wastewater. Journal of Hazardous Materials, 151(2-3), 2008: 789-793.
[4] M. Dai, Mechanism of adsorption for dyes on activated carbon. Journal of Colloid and Interface Science, 198(1), 1998: 6-10.
[5] M.F.R. Pereira, S.F. Soares, J.J.M. Órfão, J.L. Figueiredo, Adsorption of dyes on activated carbons: Influence of surface chemical groups. Carbon, 41(4), 2003: 811-821.
[6] F. Veglio’, F. Beolchini, Removal of metals by biosorption: A review. Hydrometallurgy, 44(3), 1997: 301-316.
[7] A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review. Chemical Engineering Journal, 157, 2010: 277-296.
[8] W. Chen, J. Mo, X. Du, Z. Zhang, W. Zhang, Biomimetic dynamic membrane for aquatic dye removal. Water Research, 151, 2019:243-251.
[9] S. Meng, X. Meng, W. Fan, D. Liang, L. Wang, W. Zhang, Y. Liu, The role of transparent exopolymer particles (TEP) in membrane fouling: A critical review. Water Research, 181, 2020: 115930.
[10] W. Zhang, W. Liang, Z. Zhang, Dynamic scouring of multifunctional granular material enhances filtration performance in membrane bioreactor: Mechanism and modeling. Journal of Membrane Science, 663, 2022: 120979.
[11] W. Zhang, F. Jiang, Membrane fouling in aerobic granular sludge (AGS)- membrane bioreactor (MBR): Effect of AGS size. Water Research, 157, 2019: 445-453.
[12] L. Bacakova, J. Pajorova, M. Tomkova, R. Matejka, A. Broz, J. Stepanovska, S. Prazak, A. Skogberg, S. Siljander, P. Kallio, Applications of nanocellulose/nanocarbon composites: Focus on biotechnology and medicine. Nanomaterials, 10(2), 2020: 196.
[13] N. Mohammed, N. Grishkewich, K. Chiu Tam, Cellulose nanomaterials: Promising sustainable nanomaterials for application in water/wastewater treatment processes. Environmental Science: Nano, (5), 2018, 623-658.
[14] A. Qiao, M. Cui, R. Huang, G. Ding, W. Qi, Z. He, J.J. Jaromír Klemeš, R. Su, Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohydrate Polymers, 272, 2021: 118471.
[15] B. Thomas, M. C. Raj, K.B. Athira, M.H. Rubiyah, J. Joy, A. Moores, G.L. Drisko, C. Sanchez, Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chemical Reviews, 118(24), 2018: 11575-11625.
[16] N. Lavoine, I. Desloges, A. Dufresne, J. Bras, Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 90(2), 2012: 735-764.
[17] A. Dufresne, 5. Chemical modification of nanocellulose, Nanocellulose: From Nature to High Performance Tailored Materials. De Gruyter, Berlin, Boston, 2017, 221-286.
[18] Y. Kim, J. Park, J. Bang, J. Kim, H.-J. Jin, H.W. Kwak, Highly efficient Cr(VI) beads. Journal of Hazardous Materials, 426, 2022: 128078.
[19] T. Guo, J. Song, Y. Jin, Z. Sun, L. Li, Thermally stable and green cellulose-based composites strengthened by styrene-co-acrylate latex for lithium-ion battery separators. Carbohydrate Polymers, 206, 2019: 801-810.
[20] F.A. Ngwabebhoh, N. Mammadli, U. Yildiz, Bioinspired modified nanocellulose adsorbent for enhanced boron recovery from aqueous media: Optimization, kinetics, thermodynamics and reusability study. Journal of Environmental Chemical Engineering, 7(5), 2019: 103281.
[21] T. Shahnaz, V. Sharma, S. Subbiah, S. Narayanasamy, Multivariate optimisation of Cr (VI), Co (III) and Cu (II) adsorption onto nanobentonite incorporated nanocellulose/chitosan aerogel using response surface methodology. Journal of Water Process Engineering, 36, 2020:101283.
[22] Y.C. Sharma, Adsorption characteristics of a low-cost activated carbon for the reclamation of colored effluents containing malachite green. Journal of Chemical and Engineering Data, 56(3), 2011: 478-484.
[23] J. Ahmed, A. Thakur, A. Goyal, Industrial wastewater and Its Toxic Effects, ed. M.P. Shah. The Royal Society of Chemistry, 2021: 1-14. https://doi:10.1039/9781839165399-00001
[24] H. Ali, E. Khan, I. Ilahi, Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 2019: 6730305.
[25] J.B. Vincent, Effects of chromium supplementation on body composition, human and animal health, and insulin and glucose metabolism. Current Opinion in Clinical Nutrition & Metabolic Care, 22(6), 2019: 483-489.
[26] P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy Metal Toxicity and the Environment. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, Vol.101. Springer, Basel, 2012, 101, 133-164.
[27] W.T. Wulandari, A. Rochliadi, I.M. Arcana, Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering, 107, 2016:012045.
[28] T. Wilhelm, M. Said, V. Naim, DNA replication stress and chromosomal instability: Dangerous liaisons. Genes, 11(6), 2020: 642.
[29] M. Kumar, A. Puri, A review of permissible limits of drinking water. Indian Journal of Occupational and Environmental Medicine, 16(1), 2012: 40-44.
[30] J.-J. Kim, Y.-S. Kim, V. Kumar, Heavy metal toxicity: An update of chelating therapeutic strategies. Journal of Trace Elements in Medicine and Biology, 54, 2019: 226-231.
[31] P. Squinca, S. Bilatto, A.C. Badino, C.S. Farinas, Nanocellulose Production in Future Biorefineries: An Integrated Approach Using Tailor-Made Enzymes. ACS Sustainable Chemistry & Engineering, 8(5), 2020: 2277- 2286.
[32] A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4(1), 2017: 37-59.
[33] Y. Lei, Z. Zhan, M. Saakes, R.D. Weijden, C.J.N. Buisman, Electrochemical Recovery of Phosphorus from Acidic Cheese Wastewater: Feasibility, Quality of Products, and Comparison with Chemical Precipitation. ACS ES&T Water, 1(4), 2021: 1002-1013.
[34] R. Arora, Adsorption of heavy metals-a review. Materials Today: Proceedings, 18(7), 2019: 4745-4750.
[35] N.A.A. Qasem, R.H. Mohammed, D.U. Lawal, Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water, 4, 2021: 36.
[36] Renu, M. Agarwal, K. Singh, Methodologies for removal of heavy metal ions from wastewater: an overview. Interdisciplinary Environmental Review (IER), 18(2), 2017: 124.
[37] Q. Chen, Y. Yao, X. Li, J. Lu, J. Zhou, Z. Huang, Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. Journal of Water Process Engineering, 26, 2018: 289-300.
[38] Y.C. Huang, S.S. Koseoglu, Separation of heavy metals from industrial waste streams by membrane separation technology. Waste Management, 13(5-7), 1993: 481-501.
[39] I.S. Bădescu, D. Bulgariu, I. Ahmad, L. Bulgariu, Valorisation possibilities of exhausted biosorbents loaded with metal ions – A review. Journal of Environmental Management, 224, 2018: 288-297.
[40] A.R. Lucaci, D. Bulgariu, I. Ahmad, G. Lisa, A.M. Mocanu, L. Bulgariu, Potential use of biochar from various waste biomass as biosorbent in Co(II) removal processes. Water, 11(19), 2019: 1565.
[41] M.A. Barakat, New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 2011: 361-377.
[42] A. Saxena, M. Bhardwaj, T. Allen, S. Kumar, R. Sahney, Adsorption of heavy metals from wastewater using agricultural–industrial wastes as biosorbents. Water Science, 31(2), 2017: 189-197.
[43] A.M. Elgarahy, K.Z. Elwakeel, S.H. Mohammad, G.A. Elshoubaky, A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Cleaner Engineering and Technology, 2021, 4, 100209.
[44] Y. Zhou, S. Fu, L. Zhang, H. Zhan, M.V. Levit, Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydrate Polymers, 101, 2014: 75-82.
[45] A.A. Beni, A. Esmaeili, Biosorption, an efficient method for removing heavy metals from industrial effluents: A Review. Environmental Technology & Innovation, 17, 2020: 100503.
[46] E. Torres, Biosorption: A review of the latest advances. Processes, 8(12), 2020: 1584.
[47] N. Bagotia, A.K. Sharma, S. Kumar, A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere, 268, 2021: 129309.
[48] N.V. Farinella, G.D. Matos, M.A.Z. Arruda, Grape bagasse as a potential biosorbent of metals in effluent treatments. Bioresource Technolology, 98(10), 2007: 1940-1946.
[49] P.L. Homagai, K.N. Ghimire, K. Inoue, Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. Bioresource Technolology, 2010, 101(6), 2067-2069.
[50] K. Inoue, D. Parajuli, K.N. Ghimire, B.K. Biswas, H. Kawakita, T. Oshima, K. Ohto, Biosorbents for removing hazardous metals and metalloids. Materials, 10(8), 2017: 857.
[51] M. Madeła, M. Skuza, Towards a circular economy: Analysis of the use of biowaste as biosorbent for the removal of heavy metals. Energies, 14(17), 2021: 5427.
[52] N. Tavker, V.K. Yadav, K.K. Yadav, M.M.S. Cabral-Pinto, J. Alam, A.K. Shukla, F. Ali, M. Alhoshan, Removal of cadmium and chromium by mixture of silver nanoparticles and nano-fibrillated cellulose isolated from waste peels of citrus sinensis. Polymers, 13(2), 2021: 234.
[53] H.I. Syeda, I. Sultan, K.S. Razavi, P.S. Yap, Biosorption of heavy metals from aqueous solution by various chemically modified agricultural wastes: A review. Journal of Water Process Engineering, 46, 2022: 102446.
[54] B. Volesky, Advances in biosorption of metals: Selection of biomass types. FEMS Microbiology Reviews, 14(4), 1994: 291-302.
[55] A. Hashem, C.O. Aniagor, G.M. Taha, M. Fikry, Utilization of low-cost sugarcane waste for the adsorption of aqueous Pb(II): Kinetics and isotherm studies. Current Research in Green and Sustainable Chemistry, 4, 2021:100056.
[56] D.S. Malik, C.K. Jain, A.K. Yadav, Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Applied Water Science, 7, 2017: 2113-2136.
[57] A.G. Varghese, S.A. Paul, M.S. Latha, Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environmental Chemistry Letters, 17, 2019: 867-877.
[58] J. Ponce, J.G. da S. Andrade, L.N. dos Santos, M.K. Bulla, B.C.B. Barros, S.L. Favaro, N. Hioka, W. Caetano, V.R. Batistela, Alkali pretreated sugarcane bagasse, rice husk and corn husk wastes as lignocellulosic biosorbents for dyes. Carbohydrate Polymer Technologies and Applications, 2, 2021:100061.
[59] S. Yadav, A. Yadav, N. Bagotia, A.K. Sharma, S. Kumar, Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater – A review. Journal of Water Process Engineering, 42, 2021: 102148.
[60] I. Abdelfattah, A.A. Ismail, F.A. Sayed, A. Almedolab, K.M. Aboelghait, Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost effective adsorbent. Environmental Nanotechnology, Monitoring & Management, 2016, 6, 176-183.
[61] B.A. Ezeonuegbu, D.A. Machido, C.M.Z. Whong, W.S. Japhet, A. Alexiou, S.T. Elazab, N. Qusty, C.A. Yaro, G.E.S. Batiha, Agricultural waste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreated wastewater: Biosorption, equilibrium isotherms, kinetics and desorption studies. Biotechnology Reports, 30, 2021: e00614.
[62] R.K. Gond, M.K. Gupta, M. Jawaid, Extraction of nanocellulose from sugarcane bagasse and its characterization for potential applications. Polymer Composites, 42(10), 2021: 5400-5412.
[63] V. Srivastava, Y.C. Sharma, Synthesis and characterization of Fe3O4@n-SiO2 nanoparticles from an agrowaste material and its application for the removal of Cr (VI) from aqueous solutions. Water, Air, & Soil Pollution, 225, 2014: 1776.
[64] K. Taksitta, P. Sujarit, N. Ratanawimarnwong, S. Donpudsa, K. Songsrirote, Development of tannin-immobilized cellulose fiber extracted from coconut husk and the application as a biosorbent to remove heavy metal ions. Environmental Nanotechnology, Monitoring & Management, 14, 2020: 100389.
[65] S.G. Karp, A.L. Woiciechowski, V.T. Soccol, C.R. Soccol, Pretreatment strategies for delignification of sugarcane bagasse: A Review. Brazilian Archives of Biology and Technology, 56(4), 2013: 679-689.
[66] A. Pandey, C.R. Soccol, P. Nigam, V.T. Soccol, Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresource Technology, 74, 2000: 69-80.
[67] B. Pereira, V. Arantes, Chapter 9 – Nanocelluloses From Sugarcane Biomass. In Advances Sugarcane Biorefinery Technol. Elsevier, 2018: 179-196.
[68] S. Torgbo, V.M. Quan, P. Sukyai, Cellulosic value-added products from sugarcane bagasse. Cellulose, 28, 2021: 5219-5240. 3
[69] E.O. Ajala, J.O. Ighalo, M.A. Ajala, A.G. Adeniyi, A.M. Ayanshola, Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresources and Bioprocessing, 8, 2021: 87.
[70] Z.J. de Souza, Chapter 13 – Bioelectricity of sugarcane: A case study from Brazil and perspectives. Sugarcane Biorefinery, Technology and Perspectives. Academic Press, 2020: 255-279.
[71] W. Dahou, D. Ghemati, A. Oudia, D. Aliouche, Preparation and biological characterization of cellulose graft copolymers. Biochemical Engineering Journal, 48(2), 2010: 187-194.
[72] A. Bhatnagar, M. Sillanpää, A. Witek-Krowiak, Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering Journal, 270, 2015:244-271.
[73] E. Vismara, L. Melone, G. Gastaldi, C. Cosentino, G. Torri, Surface functionalization of cotton cellulose with glycidyl methacrylate and its application for the adsorption of aromatic pollutants from wastewaters. Journal of Hazardous Materials, 170(2-3), 2009: 798-808.
[74] J. Kaur, P. Sengupta, S. Mukhopadhyay, Critical Review of Bioadsorption on Modified Cellulose and Removal of Divalent Heavy Metals (Cd, Pb, and Cu). Industrial & Engineering Chemistry Research Materials, 61(5), 2022: 1921-1954.
[75] R. Reshmy, D. Thomas, E. Philip, S.A. Paul, A. Madhavan, R. Sindhu, P. Binod, A. Pugazhendhi, R. Sirohi, A. Tarafdar, A. Pandey, Potential of nanocellulose for wastewater treatment. Chemosphere, 281, 2021: 130738. 38
[76] Y.C. Sharma, V. Srivastava, V.K. Singh, S.N. Kaul, C.H. Weng, Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environmental Technology, 30(6), 2009: 583-609.
[77] H. Bian, L. Chen, H. Dai, J.Y. Zhu, Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydrate Polymers, 167, 2017: 167-176.
[78] M.A. Mahmud, F.R. Anannya, Sugarcane bagasse – A source of cellulosic fiber for diverse applications. Heliyon, 7(8), 2021: e07771.
[79] R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 2011: 3941-3994.
[80] R.Z. Khoo, W.S. Chow, H. Ismail, Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: a review. Cellulose, 25, 2018:4303-4330.
[81] R. Scaffaro, L. Botta, F. Lopresti, A. Maio, F. Sutera, Polysaccharide nanocrystals as fillers for PLA based nanocomposites. Cellulose, 24, 2017: 447-478.
[82] J.N. Putro, S.P. Santoso, F.E. Soetaredjo, S. Ismadji, Y.-H. Ju, Nanocrystalline cellulose from waste paper: Adsorbent for azo dyes removal. Environmental Nanotechnology, Monitoring & Management, 12, 2019:100260.
[83] R. Reshmy, E. Philip, A. Madhavan, A. Pugazhendhi, R. Sindhu, R. Sirohi, M.K. Awasthi, A. Pandey, P. Binod, Nanocellulose as green material for remediation of hazardous heavy metal contaminants. Journal of Hazardous Materials, 2022, 424, 127516.
[84] H. Sadegh, G.A.M. Ali, V.K. Gupta, A.S.H. Makhlouf, R. Shahryari-ghoshekandi, M.N. Nadagouda, M. Sillanpää, E. Megiel, The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. Journal of Nanostructure in Chemistry, 7, 2017: 1-14.
[85] S. Bakand, A. Hayes, F. Dechsakulthorn, Nanoparticles: A review of particle toxicology following inhalation exposure. Inhalation Toxicology, 24(2), 2012: 125-135.
[86] P. Oberbek, P. Kozikowski, K. Czarnecka, P. Sobiech, S. Jakubiak, T. Jankowski, Inhalation exposure to various nanoparticles in work environment—contextual information and results of measurements. Journal of Nanoparticle Research, 21, 2019: 222.
[87] S. Moyo, N.N. Gumbi, L.A. De Kock, E.N. Nxumalo, A Mini-Review of Nanocellulose- Based Nanofiber Membranes Incorporating Carbon Nanomaterials for Dye Wastewater Treatment. Environmental Nanotechnology, Monitoring & Management, 18, 2022:100714.
[88] J.N. Putro, A. Kurniawan, S. Ismadji, Y.-H. Ju, Nanocellulose based biosorbents for wastewater treatment: Study of isotherm, kinetic, thermodynamic and reusability. Environmental Nanotechnology, Monitoring & Management, 8, 2017: 134-149.
[89] D. Trache, A.F. Tarchoun, M. Derradji, T.S. Hamidon, N. Masruchin, N. Brosse, M.H. Hussin, Nanocellulose: From Fundamentals to Advanced Applications. Frontiers in Chemistry, 8, 2020: 392.
[90] H. Voisin, L. Bergström, P. Liu, A.P. Mathew, Nanocellulose-based materials for water purification. Nanomaterials, 7(3), 2017: 57.
[91] J. Cui, J. Liu, C. He, J. Li, X. Wu, Composite of polyvinylidene fluoride–cellulose acetate with Al(OH)3 as a separator for high-performance lithium ion battery. Journal of Membrane Science, 541, 2017: 661-667.
[92] K. Zhang, P. Sun, H. Liu, S. Shang, J. Song, D. Wang, Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydrate Polymers, 138, 2016: 237-243.
[93] A. Mandal, D. Chakrabarty, Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86, 2011: 1291-1299.
[94] K. Plermjai, K. Boonyarattanakalin, W. Mekprasart, S. Pavasupree, W. Phoohinkong, W. Pecharapa, Extraction and characterization of nanocellulose from sugarcane bagasse by ball-milling-assisted acid hydrolysis. AIP Conference Proceedings, 2010(1), 2010: 020005.
[95] A. Kondor, A. Santmarti, A. Mautner, D. Williams, A. Bismarck, K.-Y. Lee, On the BET Surface Area of Nanocellulose Determined Using Volumetric, Gravimetric and Chromatographic Adsorption Methods. Frontiers Chemical Engineering, 3, 2021: 738995.
[96] Q. Wang, Y.H. Zhang, Extraction of nanocellulose from sugarcane bagasse. Applied Mechanics Materials, 633-634, 2014:550-553.
[97] A. Dufresne, Nanocellulose: A new ageless bionanomaterial. Materials Today, 16(6), 2013: 220-227.
[98] M. Ioelovich, Characterization of Various Kinds of Nanocellulose. Handb. Nanocellulose Cellul. Handbook of Nanocellulose and Cellulose Nanocomposites, 1, 2017, 51-100.
[99] A. Kumar, Y.S. Negi, V. Choudhary, N. Kant Bhardwaj, Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste. Journal of Materials Physics and Chemistry, 2(1), 2013: 1-8.
[100] N.T. Lam, R. Chollakup, W. Smitthipong, T. Nimchua, P. Sukyai, Characterization of Cellulose Nanocrystals Extracted from Sugarcane Bagasse for Potential Biomedical Materials. Sugar Tech, 19, 2017: 539-552.
[101] P. Phanthong, P. Reubroycharoen, X. Hao, G. Xu, A. Abudula, G. Guan, Nanocellulose: Extraction and application, Carbon Resources Conversion, 1(1), 2018: 32-43.
[102] A.J. Sayyed, D.V. Pinjari, S.H. Sonawane, B.A. Bhanvase, J. Sheikh, M. Sillanpää, Cellulose-based nanomaterials for water and wastewater treatments: A review. Journal of Environmental Chemical Engineering, 9(6), 2021: 106626.
[103] D. Trache, M.H. Hussin, N. Brosse, Editorial: Recent Trends in Preparation, Characterization and Applications of Nanocellulose. Frontiers in Chemistry, 8, 2020: 594379.
[104] D. Klemm, F. Kramer, S. Moritz, T. Lindstr¨om, M. Ankerfors, D. Gray, A. Dorris, Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition, 50(24), 2011: 5438-5466.
[105] S. Kalia, S. Boufi, A. Celli, S. Kango, Nanofibrillated cellulose: Surface modification and potential applications. Colloid Polymer Science, 292, 2014: 5-31.
[106] N. Mahfoudhi, S. Boufi, Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose, 24, 2017: 1171-1197.
[107] P. Panchal, E. Ogunsona, T. Mekonnen, Trends in advanced functional material applications of nanocellulose. Processes, 7(1), 2019: 10.
[108] M.J. Taherzadeh, K. Karimi, Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 2008: 1621-1651.
[109] R. Reshmy, E. Philip, S.A. Paul, A. Madhavan, R. Sindhu, P. Binod, A. Pandey, R. Sirohi, Nanocellulose-based products for sustainable applications-recent trends and possibilities. Reviews in Environmental Science and Bio/Technology, 19, 2020: 779-806.
[110] R. Hobzova, M. Duskova-Smrckova, J. Michalek, E. Karpushkin, P. Gatenholm, Methacrylate hydrogels reinforced with bacterial cellulose. Polymer Intentnational, 61(7), 2012, 1193-1201.
[111] M. Fiallos-Cárdenas, A.D. Ramirez, S. Pérez- Martínez, H.R. Bonilla, M. Ordoñez- Viñan, O. Ruiz-Barzola, M.A. Reinoso, Bacterial nanocellulose derived from banana leaf extract: Yield and variation factors. Resources, 10(12), 2021: 121.
[112] H.P.S. Abdul Khalil, Y. Davoudpour, M.N. Islam, A. Mustapha, K. Sudesh, R. Dungani, M. Jawaid, Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 99, 2014: 649-665.
[113] L. Brinchi, F. Cotana, E. Fortunati, J.M. Kenny, Chapter 9 – Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 94(1), 2013: 154-169.
[114] M. Ioelovich, Nanocellulose-fabrication, structure, properties, and application in the area of care and cure. Fabrication and Self-Assembly of Nanobiomaterials. William Andrew Publishing, 2016.
[115] E. Tomás-Pejó, P. Alvira, M. Ballesteros, M.J. Negro, Chapter 7 – Pretreatment technologies for lignocellulose-to-bioethanol conversion. Biofuels. Academic Press, 2011, 149-176.
[116] W.-H. Chen, S.-C. Ye, H.-K. Sheen, Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Applied Energy, 93, 2012: 237-244.
[117] M.G. Gomes, L.V.A. Gurgel, M.A. Baffi, D. Pasquini, Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis. Renewable Energy, 157, 2020:332-341.
[118] N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, M. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 2005: 673-686.
[119] P. Kumar, D.M. Barrett, M.J. Delwiche, P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 2009: 3713-3729.
[120] A. Kadimi, K. Benhamou, Y. Habibi, Z. Ounaies, H. Kaddami, Chapter 11 – Nanocellulose Alignment and Electrical Properties Improvement. Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements. William Andrew Publishing, 2016.
[121] A.R. Mankar, A. Pandey, A. Modak, K.K. Pant, Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresource Technology, 334, 2021: 125235.
[122] J.S. Kim, Y.Y. Lee, T.H. Kim, A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 2016: 42-48.
[123] G.J.M. Rocha, C. Martín, V.F.N. da Silva, E.O. Gómez, A.R. Gonçalves, Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresource Technology, 111, 2012: 447-452.
[124] G. Sarojini, S.V. Babu, N. Rajamohan, P. Senthil Kumar, M. Rajasimman, Surface modified polymer-magnetic-algae nanocomposite for the removal of chromium-equilibrium and mechanism studies. Environmental Research, 201, 2021:111626.
[125] K. Merklein, S.S. Fong, Y. Deng, Chapter 11 – Biomass Utilization. Biotechnology for Biofuel Production and Optimization. Elsevier, 2016: 291-324.
[126] H. Kargarzadeh, M. Ioelovich, I. Ahmad, S. Thomas, A. Dufresne, Methods for Extraction of Nanocellulose from Various Sources. Handbook of Nanocellulose and Cellulose Nanocomposites, 1, 2017: 1-49.
[127] J. Zhang, H. Zhou, D. Liu, X. Zhao, Pretreatment of lignocellulosic biomass for efficient enzymatic saccharification of cellulose. Lignocellulosic Biomass to Liquid Biofuels. Academic Press, 2020: 17-65.
[128] N. Suriyachai, V. Champreda, N. Kraikul, W. Techanan, N. Laosiripojana, Fractionation of lignocellulosic biopolymers from sugarcane bagasse using formic acid-catalyzed organosolv process. 3 Biotech, 8, 2018: 221.
[129] T.L. Bezerra, A.J. Ragauskas, A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels, Bioproduct and Biorefining, 10(5), 2016: 634-647.
[130] A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers. Nanoscale, 3, 2011: 71-85.
[131] T.R. Sarker, F. Pattnaik, S. Nanda, A.K. Dalai, V. Meda, S. Naik, Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere, 284, 2021: 131372.
[132] I. Hongrattanavichit, D. Aht-Ong, Nanofibrillation and characterization of sugarcane bagasse agro-waste using water-based steam explosion and high-pressure homogenization. Journal of Cleaner Production, 277, 2020: 123471
[133] B.K. Avellar, W.G. Glasser, Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass and Bioenergy, 14(3), 1998, 205-218.
[134] R.A. Ospina-Varón, F.E. López-Suárez, V. Aristizábal-Marulanda, Prefeasibility study for the nanocellulose production from biomass in the Colombian context. Biomass Conversion and Biorefinery, 12, 2021: 4245-4256.
[135] J. Albarelli, A. Paidosh, D.T. Santos, F. Maréchal, M.A.A. Meireles, Environmental, energetic and economic evaluation of implementing a supercritical fluid-based Nanocellulose production process in a sugarcane biorefinery. Chemical Engineering Transactions, 47, 2016: 49-54.
[136] S.D. de Oliveira Júnior, E.A. Asevedo, J.S. de Araújo, P.B. Brito, C.L. dos Santos Cruz Costa, G.R. de Macedo, E.S. dos Santos, Enzymatic extract of Aspergillus fumigatus CCT 7873 for hydrolysis of sugarcane bagasse and generation of cellulose nanocrystals (CNC). Biomass Convers. Biorefinery, 2020,
[137] J.D.P. de Amorim, K.C. de Souza, C.R. Duarte, I. da Silva Duarte, F. de Assis Sales Ribeiro, G.S. Silva, P.M.A. de Farias, A. Stingl, A.F.S. Costa, G.M. Vinhas, L.A. Sarubbo, Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environmental Chemistry Letters, 18, 2020: 851-869.
[138] J. de Aguiar, T.J. Bondancia, P.I.C. Claro, L.H.C. Mattoso, C.S. Farinas, J.M. Marconcini, Enzymatic Deconstruction of Sugarcane Bagasse and Straw to Obtain Cellulose Nanomaterials. ACS Sustainable Chemistry & Engineering, 8(5), 2020: 2287-2299.
[139] Z. Karim, S. Afrin, Q. Husain, R. Danish, Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Critical Reviews in Biotechnology, 37(3), 2017: 355-370.
[140] S. Cui, S. Zhang, S. Ge, L. Xiong, Q. Sun, Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Industrial Crops and Products, 83, 2016: 346-352.
[141] M. Qian, H. Lei, E. Villota, Y. Zhao, C. Wang, E. Huo, Q. Zhang, W. Mateo, X. Lin, High yield production of nanocrystalline cellulose by microwave-assisted dilute-acid pretreatment combined with enzymatic hydrolysis. Chemical Engineering and Processing – Process Intensification, 160, 2021: 108292.
[142] J. Li, X. Wei, Q. Wang, J. Chen, G. Chang, L. Kong, J. Su, Y. Liu, Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydrate Polymers, 90(4), 2012: 1609-1613.
[143] K. Zhang, Y. Su, H. Xiao, Preparation and characterization of nanofibrillated cellulose from waste sugarcane bagasse by mechanical force. BioResources, 15(3), 2020: 6636-6647.
[144] M.E. Velázquez, O.B. Ferreiro, D.B. Menezes, Y. Corrales-Ureña, J.R. Vega-Baudrit, J.D. Rivaldi, Nanocellulose Extracted from Paraguayan Residual Agro-Industrial Biomass: Extraction Process, Physicochemical and Morphological Characterization. Sustainability, 14(18), 2022: 11386.
[145] K. Saelee, N. Yingkamhaeng, T. Nimchua, P. Sukyai, An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization. Industrial Crops and Products, 82, 2016: 149-160.
[146] C. Carneiro Pessan, J. Silva Bernardes, S.H.P. Bettini, E.R. Leite, Oxidized cellulose nanofibers from sugarcane bagasse obtained by microfluidization: Morphology and rheological behavior. Carbohydrate Polymers, 304, 2023: 120505.
[147] M. Dehvari, B. Jamshidi, S. Jorfi, S. Pourfadakari, Z. Skandari, Cadmium removal from aqueous solution using cellulose nanofibers obtained from waste sugarcane bagasse (SCB): isotherm, kinetic, and thermodynamic studies. Desalination and Water Treatment, 221, 2021: 218-228.
[148] S. Pourfadakari, S. Jorfi, M. Ahmadi, A. Takdastan, Experimental data on adsorption of Cr(VI) from aqueous solution using nanosized cellulose fibers obtained from rice husk. Data in Brief, 15, 2017: 887-895.
[149] S. Hokkanen, A. Bhatnagar, M. Sillanpää, A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Research, 2016, 91, 156-173.
[150] R. Shen, S. Xue, Y. Xu, Q. Liu, Z. Feng, H. Ren, H. Zhai, F. Kong, Research Progress and Development Demand of Nanocellulose Reinforced Polymer Composites. Polymers, 12(9), 2020: 2113.
[151] M.N. Sanad, S.I. El-Dek, U. Eldemerdash, M.M. ElFaham, Study of the adsorptive removal of (Fe+2) and (Ni+2) from water by synthesized magnetite/corn cobs magnetic nanocomposite. Nano Futures, 6, 2022:025004.
[152] W.A. El-Fattaha, A. Guesmia, N.B. Hamadia, M.G. El-Desoukyc, A. Shahat, A green synthesis of cellulose nanocrystals biosorbent for remediation of wastewater containing industrial dye. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 681, 2024: 132729.
[153] V.B. Lunardi, K.C. Cheng, S.P. Lin, A.E. Angkawijaya, A.W. Go, F.E. Soetaredjo, S. Ismadji, H.Y. Hsu, C.W. Hsieh, S.P. Santoso, Modification of cellulosic adsorbent via iron-based metal phenolic networks coating for efficient removal of chromium ion. Journal of Hazardous Materials, 464, 2024: 132973.
[154] S. Hegazy, M. Manninen, S. Tuomikoski, U. Lassi, V. Srivastava, Nano-impregnation on metakaolin backbone for enhanced removal of Cu(II) and Mn(II) ions in a binary system using fixed bed column. Separation and Purification Technology, 329, 2024: 125163.

© 2023 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 2
Number 4
December 2023.



How to Cite

M.N. Sanad, M. Farouz, M.M. ElFaham, Recent Advancement in Nano Cellulose as a Biomass-Based Adsorbent for Heavy Metal Ions Removal: A Review of a Sustainable Waste Management Approach. Advanced Engineering Letters, 2(4), 2023: 120-142.

More Citation Formats