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Abstract: 
Fracture mechanics is fundamental in various fields, such as mechanical 
engineering, civil engineering, hydraulics, and medicine. In addition, thanks 
to this field, we can estimate the age of the components of a structure, and 
the inspection and maintenance intervals can be precise. Thus, fracture 
mechanics is a science that studies numerical tools to characterize various 
parameters, such as the contour integral (J), stress intensity factors, and 
internal energy. However, in this paper, comparing the two types of 
elements (CPS3) and (CPS4R) gives comparable and proportional results; 
logically, a good correlation was obtained between them. In this article, 
those parameters were simulated and analyzed numerically by the finite 
element method (FEM) of a two-dimensional model consisting of a steel 
material with elastic properties. The analysis of the crack parameters was 
evaluated by the two models of elements CPS3 and CPS4R. On the other 
hand, the crack parameters between the two elements were compared. In 
addition, the numerical simulation was carried out using the computer code 
ABAQUS 16.3.1. 
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1. INTRODUCTION 
 

Today, numerical simulation plays an essential 
role in modeling to solve problems in modern 
technology; this modeling is done by numerical 
methods, such as the finite element method, the 
extended finite element method (X-FEM), etc. In 
the research [1], the 2D extended finite element 
method (X-FEM) was used to model crack 
propagation and energy evaluation (ALLSE) by 
simulation ABAQUS software.  

Regarding crack growth, Lee et al. [2] developed 
a new advanced method (AI-FEM). The AI-FEM 
method used the simulation program to calculate 
arbitrary structures’ exact stress intensity factor. 
Alkaissi [3] used the Abaqus software FEM method 
to analyze the crack propagation. 

Laribou and Qotni’s [4] analytical calculations 
were examined and verified the SIF through an 
empirical approach of the form factor in mode I. 

Laribou and Qotni used the finite element method 
with the Abaqus software for the two different 
cracks in the linear elastic domain [4]. They applied 
the method to a crack with a circular cross-section 
and an elliptical crack under a uniform tensile load. 
Fakkoussi et al. [5] it was calculated the stress 
intensity factor KI, in mode I, by the FEM and the X-
FEM in the linear elastic domain of a longitudinal 
semi-elliptical crack of a tube. In the research [6], a 
formulation was proposed of the FEM method to 
analyze crack propagation problems. In addition, a 
combined comparative study between the two 
experimental and numerical techniques was 
presented in research [7] to study the fracture 
properties of additively fabricated polymer parts 
using digital image correlation measurement (DIC). 
In this field, Shafiei [8] studied the influence of 
geometry on the growth of an inclined crack. 
Moreover, he studied the path for an inclined 
crack subjected to dynamic loading for different 
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angles and stress values. Bentahar and Benzaama 
[9] presented a numerical study to evaluate 
different crack parameters of a multi-position FEM 
model. Tu et al. [10] studied the crack growth 
behavior in a cortex structure subjected to low 
cycle disproportionate biaxial stress during 
different stages. The research [11] presents a 
complete finite element formulation of complete 
coupling of the thermomechanical problem of 
cracked bodies. Furthermore, based on the 
stretching finite element method (SFEM), another 
method makes it possible to evaluate the stress 
intensity factor SIF of an initial crack propagation 
problem presented in research [12,13].  

 

2. FRACTURE MECHANICS 
 
The 4-node bilinear plane stress quadrilateral 

(CPS4R) and the 3-node linear plane stress triangle 
of (CPS3) elements were used around the crack 
front area called the singularity zone for the 2D 
models, Fig. 1a). This type of element is well-suited 
for simulation. The types of these “quarter point” 
singular elements are reduced quadratic elements. 
The Fig. 1b) shows different contours around the 
crack tip. 

 
 

(a) 

 

 

 

 

(b) 

Fig. 1. a) Stress field around the crack front and 
b) Definition of the different contours  

 
2.1 Law of Fatigue Crack Propagation 
 

Paris and Erdogan [14] proposed the fatigue law 
to model the crack propagation in the two-
dimensional case. This law is based on constant 
amplitude tests for which the propagation speeds 
appear as a linear function of the variation of the 
SIF in a log-log diagram, Fig. 2.  

 
Fig.2. Schematic illustration of the three modes of 

propagation of a mode (I) crack 

 
In region I, the crack growth rates are minimal. 
The joining of microcracks and the formation of 

one or more macrocracks were observed; for this 
the value of ∆K is greater than (∆K) threshold. 

In region II, the crack rate is linear. In this 
regime on the log-log diagram, the Paris law, 
defined by equation (1), establishes a linear 
relationship between Log (dA/dN) and Log ∆K; this 
is the so-called stable propagation regime. 
 

,( )
m
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K=   (1) 

 

where: ∆K being the variation of the stress 
intensity factor during a cycle, which induces an 
advance (dA) of the crack, C and m are the two 
parameters of the material defining respectively 
the position and the slope of the Paris line. 
 
2.2. Illustration of the Stress Distribution at the 

Crack Tip 
 

The general equation of the stress field in 2D 
near the crack front, defined by the K stress 
intensity factor, is given by [15]:   
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where KI,II is SIF in modes I and II respectively, 𝜎𝑖,𝑗
𝐼,𝐼𝐼  

is the associated stress field with these modes. It is 
also the stress field associated with the first and 
second modes. KI is the factor that contributes 
significantly to determining the stress state at the 
crack end level, which tends to propagate 
following the direction orthogonal to the 
maximum tangential stress at its end [16]. 
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2.3 Stress Intensity Factor 

 
The stress intensity factor is defined according 

to the following equation [17]. 
 

I
F aK  =  (4) 

( ) ( ) ( )
2 3 4

1.12 0.23( / ) 10.6 / 21.7 / 30.4 / ,F a C a C a C a C= − + − +  (5) 

 
where, F is the geometric correction factor of the 
used model, σ is the applied stress, a is the crack 
length, and C is the length of the plate.           

The stress intensity factor KII is calculated by the 

equation: 
 

sin (3cos 1) 0I IIK K + − =  (6) 

 
where θ is the kinking angle during crack 
propagation. 
 
2.4 Contour Integral (J) 

 
Several authors in continuum mechanics have 

made it possible to model the problem of the 
presence of a crack in-depth and have developed 
calculation methods. These authors [18,19], with 
contour integrals J, [20,21] among others, 
introduced an arbitrary field in formulating the 
integral they approached. Indeed, the work was 
developed based on elasticity in small 
displacements and addressed the first phase of the 
cracking process. 
 
3. NUMERICAL MODEL 

 
In the researched working model, it was 

assumed that the plate is rectangular, with 
dimensions (RxC) length and width (16mm x 7mm) 
see Fig. 3a). The plate is made of A36 steel with a 

Young's modulus E=21011 Pa and a Poisson's ratio 
ν=0.3. The finite element code ABAQUS was used 
to calculate the various internal energies, stress 
intensity factors, and J-integral. 

Uniform tensile stress σ=100 MPa was applied 
to the upper surface of the plate, and constraints 
were applied to the lower surface, Fig. 3b). 
Additionally, Fig. 4 illustrates the different 

elements used in this study and the different 
meshes: (Fig. 4a) the model by the CPS3 elements 
and (Fig. 4b) by the CPS4R elements. 

 

 

Fig. 3. Geometric characteristics of the model: a) 
Boundary conditions CPS3 elements and b) CPS4R 

elements 
 

 

Fig. 4. Mesh FEM model: a) CPS3 elements and b) CPS4R 
elements 

 

Fig. 5 shows the stress state at the singularity, 
the model by the CPS3 elements (Fig. 5a), and the 
model by the CPS4R elements (Fig. 5b). 
 

 

Fig. 5. Presentation of the state of the crack front of the 
FEM model: a) CPS3 elements and b) CPS4R elements 
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4. RESULTS AND DISCUSSIONS  
 
Fig. 6 illustrates the evolution of the internal 

energy for the two models: the first mesh model, 
which consists of CPS3 elements, and the other 
model with CPS4R elements. Research [22] carried 
out the study of different energies at the crack 
front in the case analysis of the dissipation energy 
and [23,24] in the case of the evolution of the 
strain energy. 

 

Fig. 6. Evolution of the internal energy (ALLIE) 
concerning two models 

 
Research has shown that the comparison 

between the two models is proportional, and the 
internal energy is distributed uniformly along the 
initial crack. Based on the research, it can be 
observed that the energy evolution increases with 
increasing time, in the interval from 0 s to 1.0 s, 
and the interval of internal energy varies between 

0  J and 8.010-6 J.  
Fig. 7 presents the evolution of the contour 

integral (J) as a function of time for the two models 
that we studied; we can see that the contour 
integral (J) increases from 0.25 s to 1.0 s. 
 

 

Fig. 7. Evolution of the contour integral (J) concerning 
the two models of the elements (CPS3) and (CPS4R) 

Concerning the two types of elements, the 
increase in time causes an increase in the contour 
integral (J) concerning the two models, and the 
results obtained are proportional between the two 
types of elements. 

Fig. 8 shows the results of the stress intensity 
factor KI as a function of time by the FEM method. 

In the time period from 0.35 s to 1.0 s, the 
CPS4R model has slightly higher values than the 
CPS3 model.         

Furthermore, the stress intensity factor KI is the 
same for both models in the period from 0.25 s to 
0.35 s. 

However, comparing the two types of elements 
(CPS3) and (CPS4R) yields comparable and 
proportional results; logically, a good correlation 
was obtained between them. 
 
 

 

Fig. 8. Evolution of the stress intensity factor KI 
concerning the two models of the elements (CPS3) and 

(CPS4R) 

 
Fig. 9 shows the evolution of the stress intensity 

factor KII as a function of time; from Fig. 9, it can be 
concluded that the results in the model containing 
elements (CPS3) decreased, and the values of KII 
are confined between -1 MPa (m)1/2 and -6.31 MPa 
(m)1/2 in the interval of 0.25 s and 1.0 s. On the 
other hand, the results of KII obtained by the CPS4R 
elements are increasing in the interval of the stress 
intensity factor vary between 0.2 MPa (m)1/2and 3 
MPa (m)1/2, with a time variation confined to the 
interval of 0.25 s and 1.0 s. 
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Fig. 9. Evolution of the stress intensity factor KII 

concerning the two models of the elements (CPS3) and 
(CPS4R) 

 
5. CONCLUSION 

 
In this paper, two cases of modeling an initial 

crack were studied, on the one hand the modeling 
of a model which constitutes by the elements 
(CPS3) and the other study based on the study of a 
model which constitutes by the elements (CPS4R). 

The finite element method was used for 
numerical modeling in both cases. 

The comparison between the types of elements 
(CPS4) and (CPS4R) gives comparable and 
proportional results, and a good correlation was 
obtained between them. 

It is observed that with the increase in time (t), 
the contour integral (J), the internal energy, the 
stress intensity factor KI and the stress intensity 
factor KII in the case of the model, which contained 
elements of (CPS4R) is increased. 

The research showed that the stress intensity 
factor KII in the case of the model that contained 
elements of (CPS3) is reduced. 

Indeed, the results concerning the study of 
crack propagation are always increased, except the 
results of KII are always reduced. 

In this study, the time interval ranged between 
0.25 s and 1.0 s. 
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