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Abstract:  
Ranking industrial equipment and materials constitutes a significant and intricate 
task due to the necessity of considering multiple, sometimes conflicting, criteria. 
Consequently, this ranking process is regarded as a multi-criteria decision-making 
(MCDM) problem. Within MCDM problems, the determination of criteria weights 
holds paramount importance. These weights significantly influence the ranking 
stability of alternatives when evaluated using various MCDM methodologies. Each 
weighting method, whether it is subjective or objective, has specific advantages 
and limitations. This study was conducted to propose a new method for 
determining criteria weights, named the MEREC-ROC method. The weighting 
calculation process for the criteria using the MEREC-ROC method is carried out in 
two stages. First, the objective weights of the criteria are calculated using the 
MEREC method to determine the priority order of the criteria. This priority order is 
then utilized to calculate the subjective criteria weights using the ROC method. To 
compare the MEREC-ROC method with the MEREC method, four different case 
studies related to the ranking of industrial equipment and materials were 
performed. The results show that using the MEREC-ROC method to determine 
criteria weights ensures higher stability in the ranking of alternatives when 
different MCDM methods are applied, compared to using the MEREC method 
alone. The sensitivity analysis conducted for all four cases further demonstrates 
the superiority of the MEREC-ROC method over the MEREC method. The 
limitations of this research and directions for future studies are also discussed in 
the final section of this paper. 

ARTICLE HISTORY 

Received: 3 May 2025 
Revised: 6 August 2025 
Accepted: 27 August 2025 
Available: 30 September 2025 

 

KEYWORDS 

MCDM, Weight method, 
MEREC-ROC method, 
Industrial equipment and 
material ranking, 
Development, Maintenance 

 
1. INTRODUCTION 
 

Ranking industrial equipment and materials is a 
critical task for selecting the best products for the 
manufacturing process [1]. This practice plays a 
significant role in ensuring a safe production 
environment while simultaneously improving 
productivity and reducing costs [2]. However, this 
ranking process is inherently complex. The 
complexity arises from the fact that each type of 
equipment and material possesses a multitude of 
characteristic parameters, spanning technical 
aspects (capacity, durability, performance), 
economic considerations (investment cost, 

operational expenses, lifespan), and operational 
capabilities (flexibility, reliability, compatibility). 
Notably, these parameters often exhibit trade-offs 
across different alternatives. For instance, high-
performance equipment may come with a 
substantial initial investment, or a durable material 
might lack flexibility in its applications [3].  

Ranking alternatives, where each is 
characterized by multiple, often conflicting criteria, 
is a complex task known as an MCDM process [4-6]. 
The application of MCDM methods, which helps 
decision-makers rank alternatives and identify the 
best option, has been widely adopted across 
numerous fields [7,8]. The potency and utility of 

mailto:doductrung@haui.edu.vn
https://orcid.org/0000-0002-5483-9966
https://orcid.org/0000-0002-3190-1026
https://orcid.org/0000-0001-9003-6135


B.T.T. Trang et al. / Advanced Engineering Letters Vol.4, No.3, 118-133 (2025) 

 119 

MCDM are further underscored by the conclusion 
that it can address virtually any decision-making 
problem [9,10]. 

Nevertheless, the substantial number of 
available MCDM methods renders the selection of 
an appropriate method a challenging decision in 
itself [11]. Furthermore, due to the inherent 
algorithmic differences among MCDM methods, the 
ranking result of alternatives could be changed 
remarkably when submitted to different MCDM 
methods [11]. Research has also concluded that no 
single method is universally optimal for achieving 
desired outcomes across all problem contexts [12]. 
For this reason, to ensure the accuracy of the final 
decision, it is necessary to use a combination of 
several MCDM methods for each specific case [13]. 
However, even when multiple MCDM methods are 
applied simultaneously, the order of alternatives 
can still vary significantly [14,15]. Therefore, 
creating stability in the ranking of alternatives 
across different methods is crucial. One of the main 
factors causing changes in the ranking of 
alternatives is the weighting method used for the 
criteria [16-18]. The selection of a specific method 
for defining criteria weights has itself become a 
complex decision within MCDM practice [19]. This 
motivates the search for criteria weighting methods 
that ensure stable alternative rankings if various 
MCDM approaches are applied to evaluate the 
alternatives. Section 2 provides a concise literature 
review of criteria weighting methods. The proposed 
novel method to calculate the criteria weighting is 
detailed in Section 3. Several illustrative examples 
assessing the performance of the proposed method 
are presented in Section 4, and Section 5 
undertakes a sensitivity analysis to re-evaluate the 
effectiveness of this approach. 

 
2. LITERATURE REVIEW 
 

As highlighted in the introduction, the weights 
associated with criteria have a considerable effect 
on the order of alternatives when evaluated using 
MCDM methods. Fundamentally, three primary 
categories of methods exist for determining criteria 
weights: objective weighting methods, subjective 
weighting methods, and hybrid methods that 
integrate two or more weighting approaches 
[20,21]. When employing objective weighting 
methods, the weight values of criteria are solely 
derived from the raw numerical data within the 
decision matrix, disregarding the role of the 
decision-maker. This can sometimes lead to 
suboptimal or unexpected ranking outcomes [22]. 

In other words, objective weighting methods 
inherently lack any input from the decision-maker 
[23]. In certain instances, the weights of criteria 
calculated through objective methods can exhibit 
opposing trends. For example, one report revealed 
that a criterion with a high weight when calculated 
using the LOPCOW method might have a low weight 
when determined by the entropy method [24]. 
Furthermore, another report indicated that the 
application of objective weighting methods such as 
entropy, CRITIC, and SD (standard deviation) might 
be inappropriate in some MCDM problems [25]. A 
recent study has also shown that the entropy 
objective weighting method is unsuitable because a 
highly significant criterion can be assigned a very 
low weight when calculated using this approach 
[26]. Furthermore, the effectiveness of objective 
weighting methods varies significantly in MCDM 
problems. For example, recently, a study assessed 
the three objective weighting methods, including 
Entropy, SPC, and MEREC. The results showed their 
performance ranked from highest to lowest as 
Entropy, MEREC, and SPC [27]. Moreover, it is 
crucial to emphasize the significant role of the 
decision-maker in MCDM problems; thus, the 
failure of objective weighting methods to consider 
their input is widely acknowledged as a major 
limitation [28,29]. 

Conversely, when using subjective weighting 
methods to determine criteria weights, the process 
is generally more straightforward and 
computationally less demanding compared to 
objective methods [30]. However, with subjective 
methods, the weight values of criteria are 
contingent upon the decision-maker’s subjective 
opinions, knowledge, and experience, and can 
sometimes be influenced by their psychological 
state or biases towards specific criteria [31]. 
Furthermore, subjective weighting methods also 
reveal certain limitations. For example, the AHP 
method does not entirely overcome the uncertainty 
associated with providing criteria weights through 
pairwise comparisons [32]. Additionally, a report 
concluded that two fundamental limitations of 
subjective weighting methods are the inconsistent 
judgments of human users, which increase the level 
of ambiguity, and the large number of comparisons 
required, which complicates the model’s 
application [33]. 

To address the shortcomings of both objective 
and subjective weighting method categories, as 
mentioned above, research proposing hybrid 
weighting methods that combine several 
approaches has been undertaken. Integrated 
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methods that incorporate both subjective weight 
and objective ones can not only avoid the issue of 
objective weights emphasizing factual data and 
overlooking subordinate criteria attributes, leading 
to unreasonable weight results, but also circumvent 
the problem of overly subjective expert opinions, 
thereby yielding more effective weights [34]. A few 
examples of studies within this domain are 
summarized below. 

The Delphi method was employed to identify 
criteria significantly influencing the development of 
the digital economy in certain regions of China, 
followed by the objective anti-entropy weight 
(AEW) method to calculate initial criteria weights, 
and finally, the best-worst method (BWM) was used 
to determine the final criteria weights [34]. In [35], 
the subjective weighting of criteria using the AHP 
method can mitigate subjectivity or the level of 
understanding of the evaluators if combined with 
the Data Envelopment Analysis (DEA) method. In 
[36], an incorporation of the subjective AHP 
weighting method and the objective entropy 
weighting method was implemented. In [37], when 
weighting sustainable electricity development 
alternatives in Turkey, it was observed that while 
objective weighting methods such as entropy, SD, 
and CRITIC provided relatively large variations in 
weights, subjective methods like AHP and BWM 
yielded more similar influences of the criteria. 
Nevertheless, when using multiple MCDM 
techniques to organize the alternatives, employing 
the BWM method for determining criteria influence 
resulted in the most stable ranking of alternatives. 
Several studies also used the normalized product 
weighting method of subjective weight and 
objective one to calculate the criteria weights 
[38,39]. 

Evidently, the integration of subjective and 
objective methods for weighting has attracted 
particular attention from numerous scientists, a few 
of whose studies have just been listed. This research 
does not aim to provide an in-depth analysis of the 
combined weighting methods found in published 
literature. Instead, the main purpose of this report 
is to propose a novel method to specify the criteria 
weights. 

ROC is a subjective weighting method that has 
been assessed to have an accuracy of up to 96% 
when choosing the greatest alternative [40]. The 
essence of the ROC method is in minimizing the 
errors related to partial weights by recognizing the 
centroid of potential weights while preserving the 
order of the purposes [41]. Many recently published 
studies are also utilizing this approach for 

determining criteria weights, an idea appears to 
ensure the accuracy [42]. However, when applying 
the ROC method in particular, as well as the general 
subjective weighting ones, the users still need to set 
up the priority ranking of the parameters. This will 
be further clarified when the order of steps to use 
the ROC method is outlined in the following section 
of this report. Clearly, the weights of the criteria 
depend heavily on the decision-maker’s subjectivity 
[43], and this problem enhances the challenge 
when the number of criteria is increased [44,45]. So, 
an idea emerged to ensure the accuracy of the 
criteria’s importance when using the ROC weighting 
method. Originating from this idea, the motivation 
of this study is to assess the criteria weights 
preliminarily to obtain their priority ranking. After 
that, the weighting ROC method is used to find the 
final criteria weights. To calculate these preliminary 
weights, this study employs the MEREC method, 
which is an objective weighting method. The reason 
for using MEREC in this research is that it is a 
recommended method and has been utilized in 
many recent studies [46]. A recent research also 
revealed that MEREC is the most frequently used 
method [47]. Drawing upon the notable 
characteristics of the objective MEREC weighting 
method and the subjective ROC weighting method, 
this research proposes a novel approach for 
determining criteria weights that combines the 
MEREC and ROC methods, termed the MEREC-ROC 
method. 

 
3. PROPOSED MEREC-ROC METHOD 
 

The proposed MEREC-ROC method is based on a 
combination of the MEREC and ROC methods. 
Therefore, it is first necessary to introduce the 
procedure for calculating the criteria weights using 
each of these individual methods. 

The process of using the MEREC method to 
calculate criteria weights is carried out in the 
following sequence [46,47]. 
Step 1: The decision matrix comprising m 
alternatives and n criteria was constructed, as 
shown in Eq. (1), where xij denotes the value of 
criterion j for alternative i: 

𝑋 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑛

𝑥21 𝑥22 ⋯ 𝑥2𝑛

⋯ 𝑥𝑖𝑗 ⋯ ⋯
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

] (1) 

Step 2: Normalized values are calculated according 
to Eq. (2) for criteria where “larger is better” and Eq. 
(3) for criteria where “smaller is better”: 
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𝑛𝑖𝑗 =  
𝑚𝑖𝑛𝑥𝑖𝑗

𝑥𝑖𝑗
      (2) 

𝑛𝑖𝑗 =  
𝑥𝑖𝑗

𝑚𝑎𝑥 𝑥𝑖𝑗
           (3) 

Step 3: The overall performance of the alternatives 
was computed using Eq. (4): 

𝑆𝑖 =  𝐿𝑛 [1 + (
1

𝑛
∑ |𝑙𝑛(𝑛𝑖𝑗)|𝑛

𝑗 )]             (4) 

Step 4: The performance of the alternatives was 
calculated when each criterion j was removed, using 
Eq. (5): 

𝑆𝑖𝑗
′ =  𝐿𝑛 [1 + (

1

𝑛
∑ |𝑙𝑛(𝑛𝑖𝑗)|𝑛

𝑘,𝑘≠𝑗 )]             (5) 

Step 5: The absolute deviations were calculated 
using Eq. (6): 

𝐸𝑗 =  ∑ |𝑆𝑖𝑗
′ − 𝑆𝑖|

𝑚
𝑖              (6) 

Step 6: The weights of the criteria were determined 
using Eq. (7). 

𝑤𝑗 =  
𝐸𝑗

∑ 𝐸𝑘
𝑛
𝑘

             (7) 

It is necessary to follow the sequence below for 
using the subjective weighting method ROC to 
determine criteria weights [40,41]: 
Step 1:  Ranking the criteria in the order of 
descending priority – the most important criterion 
was assigned as rank 1, and the least important one 
was assigned as rank n. 
Step 2: The weights of the criteria were calculated 
using Eq. (8), where kj represented the rank of 
criterion j. 

𝑤𝑗 =
1

𝑛
∑

1

𝑘

𝑛

𝑘=𝑖

  (8) 

The MEREC-ROC method presents a smooth 
integration between the individual MEREC and ROC 
methods. The flowchart illustrating the sequential 
process for calculating criteria weights using the 
MEREC-ROC method is depicted in Fig. 1. 

 
Fig. 1. Flowchart of the MEREC-ROC method 

4. EVALUATION OF THE PROPOSED METHOD 
 

To determine the advantages of the MEREC-ROC 
method, this section undertakes a comparative 
analysis against the MEREC method in the case of 
using it to rank several products within the 
industrial equipment and materials domain. To 
ensure objectivity when comparing two methods, 
MEREC-ROC and MEREC, four case studies of 
distinct ones were conducted, varying in the 
number of ranked alternatives, the amount of 
considered criteria, and their application to 

different subjects. The benchmark for comparing 
these two methods is the average Spearman’s rank 
correlation coefficient obtained when employing 
various MCDM techniques to arrange the 
alternatives [48,49]. This coefficient is calculated 
using Eq. (9), where Di stands for the change in the 
order of alternative i arranged by other MCDM 
methods [48,49]. 

𝑆 = 1 −
6 ∑ 𝐷𝑖

2𝑚
𝑖=1

𝑚(𝑚2−1)
      (9) 
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For ranking the priorities in each case, this 
research utilizes five distinct MCDM methods: SAW, 
TOPSIS, ROV, PIV, and RAM. The rationale for 
selecting these five methods is briefly summarized 
as follows. SAW is included due to its status as one 
of the earliest and most widely adopted MCDM 
techniques, often considered as an initial technique 
to develop subsequent ones [50]. TOPSIS and ROV 
are employed due to their established prominence 
and extensive application across diverse fields [51]. 
PIV is selected because of its benefit in reducing the 
reversal of the ranking, which was recognized [52]. 
RAM is included as a relatively new (emerging in 
September 2023) and straightforward method with 
the ability to balance between beneficial and non-
beneficial criteria [53]. 

 
4.1. Case 1: Ranking of Cutting Fluids 
 

The first case study was done with four types of 
cutting fluids, which have characteristics 
summarized in Table 1, to compare the MEREC-ROC 
weighting method and MEREC. These four 
alternatives are denoted as CF1, CF2, CF3, and CF4, 
respectively. Each cutting fluid is characterized by 
three beneficial criteria (Type B criteria), namely C2, 
C3, and C4, and one non-beneficial criterion (Type C 
criterion), which is C1 [54]. 

Applying Eqs. (1) through (7), the result is shown 
in Table 2. They were the criteria weights calculated 
by the MEREC method. From the MEREC-derived 
criteria weights, the primacy ranking of the criteria 
was determined, as shown in the four horizontal 
lines of Table 2. Utilizing this ranking of criteria, Eq. 
(8) was used to achieve the weights of the criteria 
by the ROC method, as condensed in the last row of 
this table. Because the criteria weights calculated 
by the ROC method are established from the criteria 
ranking obtained by applying the MEREC method, 
these ROC-derived weights represent the criteria 
weights obtained by the MEREC-ROC method. 

Table 1. Characteristics of cutting fluids [54] 

Type 

C1 C2 C3 C4 

density 
viscosity 

index 
viscosity 
at 100 °C 

viscosity at 
40 °C 

C B B C 

CF1 0.883 95 9 71.73 

CF2 0.953 82 8.67 75.82 

CF3 0.9058 390 4.9 12.67 

CF4 0.8316 166 2.67 8.04 

 

Table 2. Criteria weights in case 1 

Weight 
method 

C1 C2 C3 C4 

MEREC 

0.0272 0.2607 0.2599 0.4523 

Rank 

4 2 3 1 

MEREC-ROC 0.0625 0.2708 0.1458 0.5208 

 
The upper half of Table 3 summarizes the 

rankings of the CF alternatives obtained using the 
five MCDM methods (SAW, TOPSIS, ROV, PIV, and 
RAM) when the criteria weights were determined 
by the MEREC method. The lower half of Table 3 
presents the Spearman’s rank correlation 
coefficients between the different MCDM methods. 
The last row of Table 3 displays the average 
Spearman’s rank correlation coefficient across the 
MCDM methods. 

Similarly, the upper half of Table 4 summarizes 
the rankings of the CF alternatives obtained using 
the five MCDM methods when the criteria weights 
were determined by the MEREC-ROC method. The 
lower half of Table 4 presents the Spearman’s rank 
correlation coefficients between the different 
MCDM methods. The last row of Table 4 displays 
the average Spearman’s rank correlation coefficient 
across the MCDM methods. 

It can be seen from the data in Tables 3 and 4 
that, in this particular case, the Spearman’s rank 
correlation coefficient of each pair of MCDM 
methods remains identical whenever using the 
MEREC or MEREC-ROC methods. Specifically, the 
correlation between SAW and TOPSIS is 1, between 
SAW and PIV is 1, between SAW and ROV is 0.8, 
between SAW and RAM is 1, between TOPSIS and 
PIV is 1, between TOPSIS and ROV is 0.8, between 
TOPSIS and RAM is 1, between PIV and ROV is 0.8, 
between PIV and RAM is 1, and between ROV and 
RAM is also 0.8. Consequently, the average 
Spearman’s rank correlation coefficient over the 
methods is 0.9200 for both the MEREC-ROC and 
MEREC methods in defining criteria weights. Thus, 
in this particular case, it can be concluded that the 
MEREC-ROC and MEREC methods exhibit 
equivalent performance in ensuring the ranking 
stability of the cutting fluids when evaluated by 
various MCDM techniques. However, it would be 
premature to draw definitive conclusions about the 
comparison between MEREC-ROC and MEREC 
based on a single example. Instead, further case 
studies relating to the ranking of different subjects 
need to be conducted. 
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Table 3. Alternative rankings and Spearman’s rank correlation coefficients between MCDM methods with MEREC 
weights (Case 1) 

Type 
SAW TOPSIS PIV ROV RAM 

Rank 

CF1 2 2 2 1 2 

CF2 1 1 1 2 1 

CF3 3 3 3 3 3 

CF4 4 4 4 4 4 

Spearman coefficient 

SAW - 1 1 0.8 1 

TOPSIS  - 1 0.8 1 

PIV   - 0.8 1 

ROV    - 0.8 

RAM     - 

Average: 0.9200 

Table 4. Alternative rankings and Spearman’s rank correlation coefficients  of each pair of MCDM approaches using 
MEREC-ROC weights (Case 1) 

Type 
SAW TOPSIS PIV ROV RAM 

Rank 

CF1 2 2 2 1 2 

CF2 1 1 1 2 1 

CF3 3 3 3 3 3 

CF4 4 4 4 4 4 

Spearman coefficient 

SAW - 1 1 0.8 1 

TOPSIS  - 1 0.8 1 

PIV   - 0.8 1 

ROV    - 0.8 

RAM     - 

Average: 0.9200 

 
4.2. Case 2: Ranking of Robots 
 

In this case study, the MEREC-ROC and MEREC 
methods in the ranking of seven types of robots 
were used to compare. Table 5 compiles the 
information regarding these seven robots to be 

ranked, denoted as RB1 to RB7, respectively. Every 
alternative is specified by four beneficial criteria 
(Type B criteria), namely C1, C2, C4, and C5, and one 
non-beneficial criterion (Type C criterion), which is 
C3 [55]. 

 
Table 5. Characteristics of robots [55] 

Type 

C1 C2 C3 C4 C5 

Load capacity 
Maximum tip 

speed 
Repeatability Memory capacity Manipulator reach 

B B C B B 

RB1 60 0.4 2540 500 990 

RB2 6.35 0.15 1016 3000 1041 

RB3 6.8 0.1 1727.2 1500 1676 

RB4 10 0.2 1000 2000 965 

RB5 2.5 0.1 560 500 915 

RB6 4.5 0.08 1016 350 508 

RB7 3 0.1 1778 1000 920 

Following a similar procedure to Case 1, the 
criteria weights were calculated using the MEREC 
method, which subsequently allowed for the 
determination of the priority ranking among the 

criteria. From this ranking, the criteria weights were 
also calculated using the MEREC-ROC method. 
Table 6 presents all these results. 
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Table 6. Criteria weights in case 2 

Weight method C1 C2 C3 C4 C5 

MEREC 

0.2568 0.1254 0.2037 0.2570 0.1570 

Rank 

2 5 3 1 4 

MEREC-ROC 0.2567 0.0400 0.1567 0.4567 0.0900 

Tables 7 and 8 present the rankings of the RBs 
when evaluated by the MCDM methods under two 
scenarios: first, with the weights of criteria defined 
by the MEREC method, and second, with those of 
criteria defined by the MEREC-ROC method. Each 
table also lists the Spearman’s rank correlation 
coefficients of each pair of methods. 

The data in Tables 7 and 8 indicate that for Table 
7, the lowest Spearman’s rank correlation 
coefficient is 0.8214, observed between PIV and 
ROV, and also between ROV and RAM. In contrast, 
for Table 10, the lowest Spearman’s rank 

correlation coefficient is 0.8571, found between 
SAW and RAM, and between ROV and RAM. From 
this perspective as well, the MEREC-ROC method 
appears to offer an advantage over the MEREC 
method. Notably, the average Spearman’s rank 
correlation coefficient among the MCDM methods 
in Table 8 is 0.9321, which is greater than the 0.9214 
observed in Table 9. Therefore, it can be asserted 
that in this case, employing the MEREC-ROC 
weighting calculation for determining the weights 
of criteria is more beneficial in comparison to using 
only the MEREC method. 

Table 7. Alternative rankings and Spearman’s rank correlation coefficients between MCDM methods with MEREC 
weights (Case 2) 

Type 
SAW TOPSIS PIV ROV RAM 

Rank 

RB1 1 1 1 3 1 

RB2 2 2 2 1 2 

RB3 4 4 4 5 4 

RB4 3 3 3 2 3 

RB5 5 5 5 4 5 

RB6 6 6 7 6 7 

RB7 7 7 6 7 6 

Spearman coefficient 

SAW - 1 0.9643 0.8571 0.9643 

TOPSIS  - 0.9643 0.8571 0.9643 

PIV   - 0.8214 1 

ROV    - 0.8214 

RAM     - 

Average: 0.9214 

Table 8. Alternative rankings and Spearman’s rank correlation coefficients of each pair of MCDM approaches using 
MEREC-ROC weights (Case 2) 

Type 
SAW TOPSIS PIV ROV RAM 

Rank 

RB1 3 2 3 3 1 

RB2 1 1 1 1 2 

RB3 4 4 4 4 4 

RB4 2 3 2 2 3 

RB5 5 6 6 5 6 

RB6 7 7 7 7 7 

RB7 6 5 5 6 5 

Spearman coefficient 

SAW - 0.9286 0.9643 1 0.8571 

TOPSIS  - 0.9643 0.9286 0.9643 

PIV   - 0.9643 0.8929 

ROV    - 0.8571 

RAM     - 

Average: 0.9321 
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While Case 1 demonstrated comparable 
effectiveness between the MEREC-ROC and MEREC 
methods, Case 2 expresses an outstanding 
effectiveness of the MEREC-ROC method over the 
MEREC method. To arrive at a more robust 
conclusion regarding the comparative performance 
of both above methods, another case studies of the 
ranking of different subjects are warranted. 
 
 
 

4.3. Case 3: Ranking of Wood Planers 
 

The third case study for comparing MEREC-ROC 
and MEREC methods involves determining the 
criteria weights in the case of ranking different 
types of wood planers. Table 9 compiles the 
information regarding six types of wood planers, 
denoted as WP1 to WP6, respectively. Each planer 
is characterized by three beneficial criteria (Type B 
criteria), C1 to C3, and three non-beneficial criteria 
(Type C criteria), C4 to C6 [56]. 

Table 9. Characteristics of wood planers [56] 

Type 

C1 C2 C3 C4 C5 C6 

planing 
width 

maximum planing 
depth 

maximum no-load 
speed 

total machine 
length 

weight price 

B B B C C C 

WP1 82 2 16000 285 3 1.586 

WP2 82 2.6 16500 300 2.8 1.529 

WP3 82 1.8 16000 290 2.5 1.39 

WP4 102 1 17000 280 2.7 2.43 

WP5 82 2 11500 280 2.7 1.135 

WP6 82 3 18000 390 4.6 2.218 

Following a similar procedure to Case 1, the 
criteria weights were calculated using the MEREC 
method, which subsequently allowed for the 
determination of the priority ranking among the 
criteria. From this ranking, the criteria weights were 
also calculated using the MEREC-ROC method. All 
these results are presented in Table 10. 

Tables 11 and 12 present the rankings of the 
WPs when evaluated by the MCDM methods under 
two scenarios: first, with the weights of criteria 
which are defined by the MEREC method, and 
second, with the weights of criteria which are 
defined by MEREC-ROC one. Each table also lists the 
Spearman’s rank correlation coefficients between 
the methods. 

Table 10. Criteria Weights in Case 3 

Weight method C1 C2 C3 C4 C5 C6 

MEREC 

0.0185 0.3267 0.1494 0.1203 0.2060 0.1791 

Rank  

6 1 4 5 2 3 

MEREC-ROC 0.0278 0.4083 0.1028 0.0611 0.2417 0.1583 

Table 11. Alternative rankings and Spearman’s rank correlation coefficients between MCDM methods with MEREC 
weights (Case 3) 

Alt. 
SAW TOPSIS PIV ROV RAM 

Rank 

WP1 5 5 5 4 5 

WP2 1 2 1 1 1 

WP3 4 4 3 2 4 

WP4 6 6 6 6 6 

WP5 2 3 2 3 3 

WP6 3 1 4 5 2 

Spearman coefficient 

SAW - 0.8286 0.9429 0.7143 0.9429 

TOPSIS  - 0.6571 0.3714 0.9429 

PIV   - 0.8857 0.8286 

ROV    - 0.6000 

RAM     - 

Average: 0.7333 
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Table 12. Alternative rankings and Spearman’s rank correlation coefficients of each pair of MCDM approaches using 
MEREC-ROC weights (Case 3) 

Alt. 
SAW TOPSIS PIV ROV RAM 

Rank 

WP1 5 5 5 4 5 

WP2 1 2 1 1 1 

WP3 4 4 3 2 4 

WP4 6 6 6 6 6 

WP5 2 3 2 3 3 

WP6 3 1 4 5 2 

Spearman coefficient 

SAW - 0.8286 0.9429 0.7143 0.9429 

TOPSIS  - 0.6571 0.3714 0.9429 

PIV   - 0.8857 0.8286 

ROV    - 0.6000 

RAM     - 

Average: 0.7333 

It was observed that when both the MEREC and 

MEREC-ROC methods were used to calculate 

criteria weights, the average Spearman’s rank 

correlation coefficient among the MCDM methods 

was 0.7333. This result indicates that in this specific 

case, the MEREC-ROC method is equivalent to the 

MEREC method. Therefore, while Case 1 and Case 3 

showed that MEREC-ROC and MEREC are equally 

effective, Case 2 demonstrated that MEREC-ROC 

has an advantage over MEREC. This provides 

preliminary evidence suggesting that employing the 

MEREC-ROC method for determining criteria 

weights offers advantages over the MEREC method. 

Nevertheless, to enhance the generalizability of this 

conclusion, one more illustrative example warrants 

investigation. 
 
 

4.4. Case 4: Ranking of Gear Manufacturing 
Materials 

 

Table 13 presents the compiled information for 
eight types of gear manufacturing materials, 
symbolized as MG1 to MG8, respectively. Each 
alternative is specified by six beneficial criteria 
(Type B criteria, C1 to C6) and one non-beneficial 
criterion (Type C criterion, C7) [57]. 

Following a similar procedure to Case 1, the 
criteria weights, alternative rankings, and 
Spearman’s rank correlation coefficients between 
the methods were calculated, as summarized in 
Tables 14-16. 

Table 13. Characteristics of gear manufacturing materials [57] 

Materials 

C1 C2 C3 C4 C5 C6 C7 

tensile 
strength 

elongation hardness 
melting 

point 
stiffness 

impact 
toughness 

cost 

B B B B B B C 

MG1 780 18 55 635 229 880 22000 

MG2 880 15 50 735 225 390 30000 

MG3 930 13 45 785 269 590 31000 

MG4 980 15 45 785 217 600 22000 

MG5 980 12 45 835 250 950 24000 

MG6 1080 12 50 930 220 960 22000 

MG7 885 12 40 685 195 970 21000 

MG8 750 12 45 400 179 940 20000 

Table 14. Criteria weights in case 4 

Weight method C1 C2 C3 C4 C5 C6 C7 

MEREC 

0.1576 0.1700 0.1624 0.1089 0.1533 0.1021 0.1456 

Rank 

3 1 2 6 4 7 5 

MEREC-ROC 0.1561 0.3704 0.2276 0.0442 0.1085 0.0204 0.0728 
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Table 15. Alternative rankings and Spearman’s rank correlation coefficients between MCDM methods with MEREC 
weights (Case 4) 

Type 
SAW TOPSIS PIV ROV RAM 

Rank 

MG1 2 1 2 1 2 

MG2 7 7 7 6 7 

MG3 6 6 6 5 5 

MG4 4 4 4 4 4 

MG5 3 3 3 3 3 

MG6 1 2 1 2 1 

MG7 5 5 5 7 6 

MG8 8 8 8 8 8 

Spearman coefficient 

SAW - 0.9762 1 0.9048 0.9762 

TOPSIS  - 0.9762 0.9286 0.9524 

PIV   - 0.9048 0.9762 

ROV    - 0.9524 

RAM     - 

Average: 0.9548 

 
Table 16. Alternative rankings and Spearman’s rank correlation coefficients of each pair of MCDM approaches using 
MEREC-ROC weights (Case 4) 

Type 
SAW TOPSIS PIV ROV RAM 

Rank 

MG1 1 1 1 1 1 

MG2 4 3 4 3 3 

MG3 6 5 6 6 6 

MG4 2 2 2 2 2 

MG5 5 6 5 5 5 

MG6 3 4 3 4 4 

MG7 7 7 7 7 7 

MG8 8 8 8 8 8 

Spearman coefficient 

SAW - 0.9524 1 0.9762 0.9762 

TOPSIS  - 0.9524 0.9762 0.9762 

PIV   - 0.9762 0.9762 

ROV    - 1 

RAM     - 

Average: 0.9762 

It is also observed that when using the MEREC 
method for weighting criteria, the lowest 
Spearman’s rank correlation coefficient is 0.9048, 
found between SAW and ROV, and between PIV and 
ROV. Conversely, when the MEREC-ROC method is 
employed for criteria weighting (Table 16), the 
lowest Spearman’s rank correlation coefficient is 
0.9524, observed between SAW and TOPSIS, and 
between TOPSIS and PIV. Thus, from this 
perspective, the MEREC-ROC method exhibits an 
advantage over the MEREC method. Notably, the 

average Spearman’s rank correlation coefficient 
among the methods is 0.9762 if the MEREC-ROC 
method was used to calculate the weights, which is 
also significantly higher than the 0.9548 obtained 
with the MEREC method. This result firmly 
establishes that, in this case as well, the MEREC-
ROC method outperforms the MEREC method. 

To facilitate a review of the four conducted case 
studies, their fundamental information has been 
aggregated in Table 17. 
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Table 17. Basic information of the conducted case studies 

Case 
The 

number of 
alternatives 

Total 
number 

of criteria 

The number 
of beneficial 

criteria 

The 
number of 

non-
beneficial 

criteria 

The application 
domain 

Average Spearman’s rank 
correlation coefficient 

MEREC 
weight 

MEREC-ROC 
weight 

1 4 4 3 1 cutting fluid 0.9200 0.9200 

2 7 5 4 1 Robot 0.9214 0.9321 

3 6 6 3 3 Wood Planer 0.7333 0.7333 

4 8 7 6 1 
Gear Manufacturing 

Material 
0.9548 0.9762 

From four above case studies, it can be seen that 
although many factors (such as the number of 
ranked alternatives, to total number of criteria, the 
number of Type B and Type C criteria, the field of 
application) were different between the cases, but 
the cases 2 and 4 showed consistently more 
effective of the MEREC-ROC method than the 
MEREC method at ensuring the stability of 
alternative rankings when evaluated by different 
MCDM methods, while the cases 1 and 3 showed 
the equally effective of the both methods. 
Therefore, it can be concluded that, overall, using 
the MEREC-ROC method to calculate criteria 
weights provides a greater advantage compared to 
the MEREC method.  

Although the overall analysis indicates that 
employing the calculated weighting of the MEREC-
ROC method for criteria weighting ensures higher 
ranking stability of alternatives when applying the 
various MCDM methods to rank compared to the 
use of the MEREC method alone, a sensitivity 
analysis is necessary for a comprehensive 
evaluation of the differentiation between MEREC-
ROC and MEREC. The subsequent section will 
perform a sensitivity analysis for each of the four 
conducted case studies. 

5. SENSITIVITY ANALYSIS 
 

Sensitivity analysis can be performed in several 
ways, such as by changing the weights of the 
criteria, altering the number of alternatives to be 
ranked, adjusting the number of criteria used to 
evaluate each alternative, or modifying the data 
normalization method [58,59]. In this study, for 
each case, the sensitivity analysis was conducted by 
removing a specific alternative from the list of those 
to be ranked [60]. To do the comparison objectively 
of two methods, MEREC-ROC and MEREC, in each 
case, an alternative was also selected randomly to 
remove. In this study, for Case 1, the last alternative 
(CF4) was removed from the four ones; for Case 2, 
alternative 4 (RB4) was removed from the seven 
ones; for Case 3, alternative 3 (WP3) was removed 
from the six ones; and for Case 4, the first one 
(MG1) was removed among the eight alternatives. 

Arranging the order of the remaining 
alternatives and the calculation of Spearman’s rank 
correlation coefficients in every case were 
performed analogously to the procedures described 
in Section 4. Tables 18-21 summarize the 
Spearman’s rank correlation coefficient data for 
each scenario. 

Table 18. Spearman’s rank correlation coefficients for case 1 after removing CF4 

Method 
MEREC MEREC-ROC 

TOPSIS PIV ROV RAM TOPSIS PIV ROV RAM 

SAW 1 1 0.5 1 1 1 0.5 1 

TOPSIS   1 0.5 1   1 0.5 1 

PIV     0.5 1     0.5 1 

ROV       0.5       0.5 

Average 0.8 0.8 

Table 19. Spearman’s rank correlation coefficients for case 2 after removing RB4 

Method 
MEREC MEREC-ROC 

TOPSIS PIV ROV RAM TOPSIS PIV ROV RAM 

SAW 1 0.9429 0.8857 0.9429 0.9643 1 0.9429 0.9429 

TOPSIS  0.9429 0.8857 0.9429  0.9429 1 0.8286 

PIV   0.8286 1   0.9429 0.9429 

ROV    0.8286    0.8286 

Average 0.9200 0.9336 
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Table 20. Spearman’s rank correlation coefficients for case 3 after removing WP3 

Method 
MEREC MEREC-ROC 

TOPSIS PIV ROV RAM TOPSIS PIV ROV RAM 

SAW 0.7000 0.9000 0.7000 0.9000 0.7000 1.0000 0.9000 0.9000 

TOPSIS  0.4000 0.3000 0.9000  0.7000 0.4000 0.9000 

PIV   0.9000 0.7000   0.9000 0.9000 

ROV    0.6000    0.7000 

Average 0.6500 0.7667 

Table 21. Spearman’s rank correlation coefficients for case 4 after removing MG1 

Method 
MEREC MEREC-ROC 

TOPSIS PIV ROV RAM TOPSIS PIV ROV RAM 

SAW 0.9286 0.9643 0.8571 1 0.9643 1 0.9286 1 

TOPSIS  0.9643 0.7143 0.9286  0.9643 0.8929 0.9643 

PIV   0.8214 0.9643   0.9286 1 

ROV    0.8571    0.9286 

Average 0.9000 0.9571 

Observing the data in Tables 17-21 reveals that 
for Case 1, for Case 1, even with the removal of CF4, 
the MEREC-ROC and MEREC methods continue to 
exhibit similar performance, consistent with the 
findings before the removal (refer back to Section 

4.1). For the three other cases, employing MEREC-
ROC for the criteria weights also yields a higher 
average Spearman’s rank correlation coefficient 
compared to using MEREC for criteria weighting. 

This confirms the excellent effectiveness of MEREC-
ROC in comparison to MEREC in these three cases. 

Based on the collective results obtained, a 
robust conclusion can be drawn: the ranking 
stability of alternatives when evaluated by different 
MCDM methods is enhanced when the MEREC-ROC 
method is used for criteria weighting compared to 
using the MEREC method alone. 

This study introduces a new method called 
MEREC-ROC, which leverages the strengths of two 
component methods: the objective weighting of the 
MEREC method and the subjective weighting of the 
ROC method. This represents an innovative 
discovery for creating a hybrid weighting method 
that combines both objective and subjective 
factors. The goal is to ensure high stability in the 
ranking of alternatives when they are evaluated 
using various MCDM methods. 

 
6. CONCLUSION 
 

Calculating the weights for the criteria is a crucial 
task in solving MCDM problems. Using an objective 
method to determine these weights can diminish 
the role of experts in the decision-making process, 
sometimes leading to undesirable outcomes. 
Conversely, relying on subjective methods for 

weighting can easily introduce errors stemming 
from a decision maker’s personal experience or 
their bias towards a particular criterion. This study 
combines the MEREC objective weighting method 
with the ROC subjective weighting method to form 
a hybrid approach called the MEREC-ROC weighting 
method. From a series of evaluations, including a 
case-by-case sensitivity analysis, it can be verified 
that the ranking of alternatives by different MCDM 
methods will be more stable if using the MEREC-
ROC method to calculate criteria weights instead of 
using the MEREC method alone. 

The hybrid MEREC-ROC weighting method 
proposed in this study represents a judicious fusion 
of MEREC and ROC, yielding a valuable technique 
that contributes to the existing repertoire of 
weighting ones to contribute to solve MCDM issues. 

In this investigation, the efficacy of MEREC-ROC 
has been demonstrated to be superior to that of 
MEREC. However, the achieved results are confined 
to specific case studies involving the ranking of 
industrial equipment and materials. The advantages 
of MEREC-ROC over MEREC are anticipated to 
extend to other domains as well. Nevertheless, this 
expectation warrants empirical validation in 
subsequent research endeavors. 

This study has primarily compared the 
effectiveness of MEREC-ROC against MEREC in 
scenarios where the elements within the decision 
matrix are concrete numerical values. Future 
research should extend this comparison to 
situations where the decision matrix incorporates 
fuzzy sets and rough analysis. 
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