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Abstract:

Ranking industrial equipment and materials constitutes a significant and intricate
task due to the necessity of considering multiple, sometimes conflicting, criteria.
Consequently, this ranking process is regarded as a multi-criteria decision-making
(MCDM) problem. Within MCDM problems, the determination of criteria weights
holds paramount importance. These weights significantly influence the ranking
stability of alternatives when evaluated using various MCDM methodologies. Each
weighting method, whether it is subjective or objective, has specific advantages
and limitations. This study was conducted to propose a new method for
determining criteria weights, named the MEREC-ROC method. The weighting
calculation process for the criteria using the MEREC-ROC method is carried out in
two stages. First, the objective weights of the criteria are calculated using the
MEREC method to determine the priority order of the criteria. This priority order is
then utilized to calculate the subjective criteria weights using the ROC method. To
compare the MEREC-ROC method with the MEREC method, four different case
studies related to the ranking of industrial equipment and materials were
performed. The results show that using the MEREC-ROC method to determine
criteria weights ensures higher stability in the ranking of alternatives when
different MCDM methods are applied, compared to using the MEREC method
alone. The sensitivity analysis conducted for all four cases further demonstrates
the superiority of the MEREC-ROC method over the MEREC method. The
limitations of this research and directions for future studies are also discussed in
the final section of this paper.
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1. INTRODUCTION

Ranking industrial equipment and materials is a
critical task for selecting the best products for the
manufacturing process [1]. This practice plays a
significant role in ensuring a safe production
environment while simultaneously improving
productivity and reducing costs [2]. However, this
ranking process is inherently complex. The
complexity arises from the fact that each type of
equipment and material possesses a multitude of

characteristic parameters, spanning technical
aspects (capacity, durability, performance),
economic  considerations (investment  cost,

operational expenses, lifespan), and operational
capabilities (flexibility, reliability, compatibility).
Notably, these parameters often exhibit trade-offs
across different alternatives. For instance, high-
performance equipment may come with a
substantial initial investment, or a durable material
might lack flexibility in its applications [3].

Ranking  alternatives, @ where each is
characterized by multiple, often conflicting criteria,
is a complex task known as an MCDM process [4-6].
The application of MCDM methods, which helps
decision-makers rank alternatives and identify the
best option, has been widely adopted across
numerous fields [7,8]. The potency and utility of
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MCDM are further underscored by the conclusion
that it can address virtually any decision-making
problem [9,10].

Nevertheless, the substantial number of
available MCDM methods renders the selection of
an appropriate method a challenging decision in
itself [11]. Furthermore, due to the inherent
algorithmic differences among MCDM methods, the
ranking result of alternatives could be changed
remarkably when submitted to different MCDM
methods [11]. Research has also concluded that no
single method is universally optimal for achieving
desired outcomes across all problem contexts [12].
For this reason, to ensure the accuracy of the final
decision, it is necessary to use a combination of
several MCDM methods for each specific case [13].
However, even when multiple MCDM methods are
applied simultaneously, the order of alternatives
can still vary significantly [14,15]. Therefore,
creating stability in the ranking of alternatives
across different methods is crucial. One of the main
factors causing changes in the ranking of
alternatives is the weighting method used for the
criteria [16-18]. The selection of a specific method
for defining criteria weights has itself become a
complex decision within MCDM practice [19]. This
motivates the search for criteria weighting methods
that ensure stable alternative rankings if various
MCDM approaches are applied to evaluate the
alternatives. Section 2 provides a concise literature
review of criteria weighting methods. The proposed
novel method to calculate the criteria weighting is
detailed in Section 3. Several illustrative examples
assessing the performance of the proposed method
are presented in Section 4, and Section 5
undertakes a sensitivity analysis to re-evaluate the
effectiveness of this approach.

2. LITERATURE REVIEW

As highlighted in the introduction, the weights
associated with criteria have a considerable effect
on the order of alternatives when evaluated using
MCDM methods. Fundamentally, three primary
categories of methods exist for determining criteria
weights: objective weighting methods, subjective
weighting methods, and hybrid methods that
integrate two or more weighting approaches
[20,21]. When employing objective weighting
methods, the weight values of criteria are solely
derived from the raw numerical data within the
decision matrix, disregarding the role of the
decision-maker. This can sometimes lead to
suboptimal or unexpected ranking outcomes [22].

In other words, objective weighting methods
inherently lack any input from the decision-maker
[23]. In certain instances, the weights of criteria
calculated through objective methods can exhibit
opposing trends. For example, one report revealed
that a criterion with a high weight when calculated
using the LOPCOW method might have a low weight
when determined by the entropy method [24].
Furthermore, another report indicated that the
application of objective weighting methods such as
entropy, CRITIC, and SD (standard deviation) might
be inappropriate in some MCDM problems [25]. A
recent study has also shown that the entropy
objective weighting method is unsuitable because a
highly significant criterion can be assigned a very
low weight when calculated using this approach
[26]. Furthermore, the effectiveness of objective
weighting methods varies significantly in MCDM
problems. For example, recently, a study assessed
the three objective weighting methods, including
Entropy, SPC, and MEREC. The results showed their
performance ranked from highest to lowest as
Entropy, MEREC, and SPC [27]. Moreover, it is
crucial to emphasize the significant role of the
decision-maker in MCDM problems; thus, the
failure of objective weighting methods to consider
their input is widely acknowledged as a major
limitation [28,29].

Conversely, when using subjective weighting
methods to determine criteria weights, the process
is generally more  straightforward and
computationally less demanding compared to
objective methods [30]. However, with subjective
methods, the weight values of criteria are
contingent upon the decision-maker’s subjective
opinions, knowledge, and experience, and can
sometimes be influenced by their psychological
state or biases towards specific criteria [31].
Furthermore, subjective weighting methods also
reveal certain limitations. For example, the AHP
method does not entirely overcome the uncertainty
associated with providing criteria weights through
pairwise comparisons [32]. Additionally, a report
concluded that two fundamental limitations of
subjective weighting methods are the inconsistent
judgments of human users, which increase the level
of ambiguity, and the large number of comparisons
required, which complicates the model’s
application [33].

To address the shortcomings of both objective
and subjective weighting method categories, as
mentioned above, research proposing hybrid
weighting methods that combine several
approaches has been undertaken. Integrated
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methods that incorporate both subjective weight
and objective ones can not only avoid the issue of
objective weights emphasizing factual data and
overlooking subordinate criteria attributes, leading
to unreasonable weight results, but also circumvent
the problem of overly subjective expert opinions,
thereby yielding more effective weights [34]. A few
examples of studies within this domain are
summarized below.

The Delphi method was employed to identify
criteria significantly influencing the development of
the digital economy in certain regions of China,
followed by the objective anti-entropy weight
(AEW) method to calculate initial criteria weights,
and finally, the best-worst method (BWM) was used
to determine the final criteria weights [34]. In [35],
the subjective weighting of criteria using the AHP
method can mitigate subjectivity or the level of
understanding of the evaluators if combined with
the Data Envelopment Analysis (DEA) method. In
[36], an incorporation of the subjective AHP
weighting method and the objective entropy
weighting method was implemented. In [37], when
weighting sustainable electricity development
alternatives in Turkey, it was observed that while
objective weighting methods such as entropy, SD,
and CRITIC provided relatively large variations in
weights, subjective methods like AHP and BWM
yielded more similar influences of the criteria.
Nevertheless, when wusing multiple MCDM
techniques to organize the alternatives, employing
the BWM method for determining criteria influence
resulted in the most stable ranking of alternatives.
Several studies also used the normalized product
weighting method of subjective weight and
objective one to calculate the criteria weights
[38,39].

Evidently, the integration of subjective and
objective methods for weighting has attracted
particular attention from numerous scientists, a few
of whose studies have just been listed. This research
does not aim to provide an in-depth analysis of the
combined weighting methods found in published
literature. Instead, the main purpose of this report
is to propose a novel method to specify the criteria
weights.

ROC is a subjective weighting method that has
been assessed to have an accuracy of up to 96%
when choosing the greatest alternative [40]. The
essence of the ROC method is in minimizing the
errors related to partial weights by recognizing the
centroid of potential weights while preserving the
order of the purposes [41]. Many recently published
studies are also utilizing this approach for

determining criteria weights, an idea appears to
ensure the accuracy [42]. However, when applying
the ROC method in particular, as well as the general
subjective weighting ones, the users still need to set
up the priority ranking of the parameters. This will
be further clarified when the order of steps to use
the ROC method is outlined in the following section
of this report. Clearly, the weights of the criteria
depend heavily on the decision-maker’s subjectivity
[43], and this problem enhances the challenge
when the number of criteria is increased [44,45]. So,
an idea emerged to ensure the accuracy of the
criteria’s importance when using the ROC weighting
method. Originating from this idea, the motivation
of this study is to assess the criteria weights
preliminarily to obtain their priority ranking. After
that, the weighting ROC method is used to find the
final criteria weights. To calculate these preliminary
weights, this study employs the MEREC method,
which is an objective weighting method. The reason
for using MEREC in this research is that it is a
recommended method and has been utilized in
many recent studies [46]. A recent research also
revealed that MEREC is the most frequently used
method [47]. Drawing wupon the notable
characteristics of the objective MEREC weighting
method and the subjective ROC weighting method,
this research proposes a novel approach for
determining criteria weights that combines the
MEREC and ROC methods, termed the MEREC-ROC
method.

3. PROPOSED MEREC-ROC METHOD

The proposed MEREC-ROC method is based on a
combination of the MEREC and ROC methods.
Therefore, it is first necessary to introduce the
procedure for calculating the criteria weights using
each of these individual methods.

The process of using the MEREC method to

calculate criteria weights is carried out in the
following sequence [46,47].
Step 1: The decision matrix comprising m
alternatives and n criteria was constructed, as
shown in Eq. (1), where x; denotes the value of
criterion j for alternative i:

X11 X122 "t Xin
X21 X2 "t Xop
X=|/1 (1)
xi]-
Xm1 Xm2 °° Xmn

Step 2: Normalized values are calculated according
to Eq. (2) for criteria where “larger is better” and Eq.
(3) for criteria where “smaller is better”:

120



B.T.T. Trang et al. / Advanced Engineering Letters Vol.4, No.3, 118-133 (2025)

__ minx;j
ngj x—” (2)
s = Xil
nl} max xij (3)

Step 3: The overall performance of the alternatives
was computed using Eq. (4):

1 n
Step 4: The performance of the alternatives was
calculated when each criterion j was removed, using
Eq. (5):
, 1

Sij=1ILn [1 + (; ﬁ,k¢j|ln(nij)|)] (5)
Step 5: The absolute deviations were calculated
using Eq. (6):

E; = X'|Si; — Sil (6)

Step 6: The weights of the criteria were determined
using Eq. (7).

| Build the decision marix. |

h 4

‘ Calculate the normalized values. ‘

}

Calculate the overall performance
of the alternatives.

I

Calculate the absolute values of the
deviations.

}

Calculate the absolute values of the
deviations.

.

Calculate the weights for the

W= (7)

J T 3nE,

It is necessary to follow the sequence below for
using the subjective weighting method ROC to
determine criteria weights [40,41]:

Step 1: Ranking the criteria in the order of
descending priority — the most important criterion
was assigned as rank 1, and the least important one
was assigned as rank n.

Step 2: The weights of the criteria were calculated
using Eq. (8), where k; represented the rank of

criterion .
= 1
> (8)

k=i

_ 1
w; = -
The MEREC-ROC method presents a smooth
integration between the individual MEREC and ROC
methods. The flowchart illustrating the sequential
process for calculating criteria weights using the
MEREC-ROC method is depicted in Fig. 1.

Rank the criteria in descending

¥

order of priority.

|

Calculate the weights for the
criteria.

criteria.

MEREC method

ROC method

MEREC-ROC method

Fig. 1. Flowchart of the MEREC-ROC method

4. EVALUATION OF THE PROPOSED METHOD

To determine the advantages of the MEREC-ROC
method, this section undertakes a comparative
analysis against the MEREC method in the case of
using it to rank several products within the
industrial equipment and materials domain. To
ensure objectivity when comparing two methods,
MEREC-ROC and MEREC, four case studies of
distinct ones were conducted, varying in the
number of ranked alternatives, the amount of
considered criteria, and their application to

different subjects. The benchmark for comparing
these two methods is the average Spearman’s rank
correlation coefficient obtained when employing
various MCDM techniques to arrange the
alternatives [48,49]. This coefficient is calculated
using Eq. (9), where D; stands for the change in the
order of alternative i arranged by other MCDM
methods [48,49].
§=1-2220 (9)

m(m2-1)
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For ranking the priorities in each case, this
research utilizes five distinct MCDM methods: SAW,
TOPSIS, ROV, PIV, and RAM. The rationale for
selecting these five methods is briefly summarized
as follows. SAW is included due to its status as one
of the earliest and most widely adopted MCDM
techniques, often considered as an initial technique
to develop subsequent ones [50]. TOPSIS and ROV
are employed due to their established prominence
and extensive application across diverse fields [51].
PIV is selected because of its benefit in reducing the
reversal of the ranking, which was recognized [52].
RAM is included as a relatively new (emerging in
September 2023) and straightforward method with
the ability to balance between beneficial and non-
beneficial criteria [53].

4.1. Case 1: Ranking of Cutting Fluids

The first case study was done with four types of
cutting  fluids, which have characteristics
summarized in Table 1, to compare the MEREC-ROC
weighting method and MEREC. These four
alternatives are denoted as CF1, CF2, CF3, and CF4,
respectively. Each cutting fluid is characterized by
three beneficial criteria (Type B criteria), namely C2,
C3, and C4, and one non-beneficial criterion (Type C
criterion), which is C1 [54].

Applying Egs. (1) through (7), the result is shown
in Table 2. They were the criteria weights calculated
by the MEREC method. From the MEREC-derived
criteria weights, the primacy ranking of the criteria
was determined, as shown in the four horizontal
lines of Table 2. Utilizing this ranking of criteria, Eq.
(8) was used to achieve the weights of the criteria
by the ROC method, as condensed in the last row of
this table. Because the criteria weights calculated
by the ROC method are established from the criteria
ranking obtained by applying the MEREC method,
these ROC-derived weights represent the criteria
weights obtained by the MEREC-ROC method.

Table 1. Characteristics of cutting fluids [54]

Cc1 Cc2 Cc3 Cca
. viscosity | viscosity | viscosity at

Type | density | 4 yex | at100°C | 40°C

C B B C
CF1 | 0.883 95 9 71.73
CF2 | 0.953 82 8.67 75.82
CF3 | 0.9058 390 4.9 12.67
CF4 | 0.8316 166 2.67 8.04

Table 2. Criteria weights in case 1

Weight
method c1 Cc2 Cc3 Cc4
0.0272 0.2607 0.2599 0.4523
MEREC Rank
4 2 3 1
MEREC-ROC 0.0625 0.2708 0.1458 0.5208

The upper half of Table 3 summarizes the
rankings of the CF alternatives obtained using the
five MCDM methods (SAW, TOPSIS, ROV, PIV, and
RAM) when the criteria weights were determined
by the MEREC method. The lower half of Table 3
presents the Spearman’s rank correlation
coefficients between the different MCDM methods.
The last row of Table 3 displays the average
Spearman’s rank correlation coefficient across the
MCDM methods.

Similarly, the upper half of Table 4 summarizes
the rankings of the CF alternatives obtained using
the five MCDM methods when the criteria weights
were determined by the MEREC-ROC method. The
lower half of Table 4 presents the Spearman’s rank
correlation coefficients between the different
MCDM methods. The last row of Table 4 displays
the average Spearman’s rank correlation coefficient
across the MCDM methods.

It can be seen from the data in Tables 3 and 4
that, in this particular case, the Spearman’s rank
correlation coefficient of each pair of MCDM
methods remains identical whenever using the
MEREC or MEREC-ROC methods. Specifically, the
correlation between SAW and TOPSIS is 1, between
SAW and PIV is 1, between SAW and ROV is 0.8,
between SAW and RAM is 1, between TOPSIS and
PIV is 1, between TOPSIS and ROV is 0.8, between
TOPSIS and RAM is 1, between PIV and ROV is 0.8,
between PIV and RAM is 1, and between ROV and
RAM is also 0.8. Consequently, the average
Spearman’s rank correlation coefficient over the
methods is 0.9200 for both the MEREC-ROC and
MEREC methods in defining criteria weights. Thus,
in this particular case, it can be concluded that the
MEREC-ROC and MEREC methods exhibit
equivalent performance in ensuring the ranking
stability of the cutting fluids when evaluated by
various MCDM techniques. However, it would be
premature to draw definitive conclusions about the
comparison between MEREC-ROC and MEREC
based on a single example. Instead, further case
studies relating to the ranking of different subjects
need to be conducted.
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Table 3. Alternative rankings and Spearman’s rank correlation coefficients between MCDM methods with MEREC

weights (Case 1)

Type SAW TOPSIS PIV ROV RAM
Rank
CF1 2 2 2 1 2
CF2 1 1 1 2 1
CF3 3 3 3 3 3
CF4 4 4 4 4 4
Spearman coefficient
SAW - 1 1 0.8 1
TOPSIS - 1 0.8 1
PIV - 0.8 1
ROV - 0.8
RAM -
Average: 0.9200

Table 4. Alternative rankings and Spearman’s rank correlation coefficients of each pair of MCDM approaches using
MEREC-ROC weights (Case 1)

SAW TOPSIS PIV ROV RAM
Type Rank
CF1 2 2 2 1 2
CF2 1 1 1 2 1
CF3 3 3 3 3 3
CF4 4 4 4 4 4
Spearman coefficient
SAW - 1 1 0.8 1
TOPSIS - 1 0.8 1
PIV - 0.8 1
ROV - 0.8
RAM -
Average: 0.9200

4.2. Case 2: Ranking of Robots

In this case study, the MEREC-ROC and MEREC
methods in the ranking of seven types of robots
were used to compare. Table 5 compiles the
information regarding these seven robots to be

ranked, denoted as RB1 to RB7, respectively. Every
alternative is specified by four beneficial criteria
(Type B criteria), namely C1, C2, C4, and C5, and one
non-beneficial criterion (Type C criterion), which is
C3 [55].

Table 5. Characteristics of robots [55]

C1 Cc2 C3 C4 C5

Type Load capacity Ma):g;l;? tip Repeatability | Memory capacity Manipulator reach
B B C B B

RB1 60 0.4 2540 500 990

RB2 6.35 0.15 1016 3000 1041

RB3 6.8 0.1 1727.2 1500 1676

RB4 10 0.2 1000 2000 965

RB5 2.5 0.1 560 500 915

RB6 4.5 0.08 1016 350 508

RB7 3 0.1 1778 1000 920

Following a similar procedure to Case 1, the
criteria weights were calculated using the MEREC
method, which subsequently allowed for the
determination of the priority ranking among the

criteria. From this ranking, the criteria weights were
also calculated using the MEREC-ROC method.
Table 6 presents all these results.
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Table 6. Criteria weights in case 2

Weight method C1 C2 C3 c4 C5
0.2568 0.1254 0.2037 0.2570 0.1570
MEREC Rank
2 5 3 1 4
MEREC-ROC 0.2567 0.0400 0.1567 0.4567 0.0900

Tables 7 and 8 present the rankings of the RBs
when evaluated by the MCDM methods under two
scenarios: first, with the weights of criteria defined
by the MEREC method, and second, with those of
criteria defined by the MEREC-ROC method. Each
table also lists the Spearman’s rank correlation
coefficients of each pair of methods.

The data in Tables 7 and 8 indicate that for Table
7, the lowest Spearman’s rank correlation
coefficient is 0.8214, observed between PIV and
ROV, and also between ROV and RAM. In contrast,
for Table 10, the lowest Spearman’s rank

correlation coefficient is 0.8571, found between
SAW and RAM, and between ROV and RAM. From
this perspective as well, the MEREC-ROC method
appears to offer an advantage over the MEREC
method. Notably, the average Spearman’s rank
correlation coefficient among the MCDM methods
in Table 8is0.9321, which is greater than the 0.9214
observed in Table 9. Therefore, it can be asserted
that in this case, employing the MEREC-ROC
weighting calculation for determining the weights
of criteria is more beneficial in comparison to using
only the MEREC method.

Table 7. Alternative rankings and Spearman’s rank correlation coefficients between MCDM methods with MEREC

weights (Case 2)

Table 8. Alternative rankings and Spearman’s rank correlation coefficients of each pair of MCDM approaches using

SAW TOPSIS PIV ROV RAM
Type Rank
RB1 1 1 1 3 1
RB2 2 2 2 1 2
RB3 4 4 4 5 4
RB4 3 3 3 2 3
RB5 5 5 5 4 5
RB6 6 6 7 6 7
RB7 7 7 6 7 6
Spearman coefficient
SAW - 1 0.9643 0.8571 0.9643
TOPSIS - 0.9643 0.8571 0.9643
PIV - 0.8214 1
ROV - 0.8214
RAM -
Average: 0.9214

MEREC-ROC weights (Case 2)

SAW TOPSIS PIV ROV RAM
Type Rank
RB1 3 2 3 3 1
RB2 1 1 1 1 2
RB3 4 4 4 4 4
RB4 2 3 2 2 3
RB5 5 6 6 5 6
RB6 7 7 7 7 7
RB7 6 5 5 6 5
Spearman coefficient
SAW - 0.9286 0.9643 1 0.8571
TOPSIS - 0.9643 0.9286 0.9643
PIV - 0.9643 0.8929
ROV - 0.8571
RAM -
Average: 0.9321
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While Case 1 demonstrated comparable
effectiveness between the MEREC-ROC and MEREC
methods, Case 2 expresses an outstanding
effectiveness of the MEREC-ROC method over the
MEREC method. To arrive at a more robust
conclusion regarding the comparative performance
of both above methods, another case studies of the
ranking of different subjects are warranted.

Table 9. Characteristics of wood planers [56]

4.3. Case 3: Ranking of Wood Planers

The third case study for comparing MEREC-ROC
and MEREC methods involves determining the
criteria weights in the case of ranking different
types of wood planers. Table 9 compiles the
information regarding six types of wood planers,
denoted as WP1 to WP6, respectively. Each planer
is characterized by three beneficial criteria (Type B
criteria), C1 to C3, and three non-beneficial criteria
(Type C criteria), C4 to C6 [56].

Cc1 Cc2 C3 Cca C5 C6

lanin maximum planin maximum no-load total machine . .
Type pwidthg deptﬁ : speed length weight price

B B B C C C
WP1 82 2 16000 285 3 1.586
WP2 82 2.6 16500 300 2.8 1.529
WP3 82 1.8 16000 290 2.5 1.39
WP4 102 1 17000 280 2.7 2.43
WP5 82 2 11500 280 2.7 1.135
WP6 82 3 18000 390 4.6 2.218

Following a similar procedure to Case 1, the
criteria weights were calculated using the MEREC
method, which subsequently allowed for the
determination of the priority ranking among the
criteria. From this ranking, the criteria weights were
also calculated using the MEREC-ROC method. All
these results are presented in Table 10.

Table 10. Criteria Weights in Case 3

Tables 11 and 12 present the rankings of the
WPs when evaluated by the MCDM methods under
two scenarios: first, with the weights of criteria
which are defined by the MEREC method, and
second, with the weights of criteria which are
defined by MEREC-ROC one. Each table also lists the
Spearman’s rank correlation coefficients between
the methods.

Weight method C1 C2 C3 c4 C5 Ccé6
0.0185 0.3267 0.1494 0.1203 0.2060 0.1791
MEREC Rank
6 1 4 5 2 3
MEREC-ROC 0.0278 0.4083 0.1028 0.0611 0.2417 0.1583

Table 11. Alternative rankings and Spearman’s rank correlation coefficients between MCDM methods with MEREC

weights (Case 3)

AlL SAW TOPSIS | PV | ROV | RAM
Rank
WP1 5 5 5 4 5
WP2 1 2 1 1 1
WP3 4 4 3 2 4
WP4 6 6 6 6 6
WP5 2 3 2 3 3
WP6 3 1 4 5 2
Spearman coefficient

SAW - 0.8286 0.9429 0.7143 0.9429

TOPSIS - 0.6571 0.3714 0.9429

PIV - 0.8857 0.8286

ROV - 0.6000
RAM -

Average: 0.7333
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Table 12. Alternative rankings and Spearman’s rank correlation coefficients of each pair of MCDM approaches using
MEREC-ROC weights (Case 3)

SAW TOPSIS PIV ROV RAM
Alt.
Rank
WP1 5 5 5 4 5
WP2 1 2 1 1 1
WP3 4 4 3 2 4
WP4 6 6 6 6 6
WP5 2 3 2 3 3
WP6 3 1 4 5 2
Spearman coefficient
SAW - 0.8286 0.9429 0.7143 0.9429
TOPSIS - 0.6571 0.3714 0.9429
PIV - 0.8857 0.8286
ROV - 0.6000
RAM -
Average: 0.7333

It was observed that when both the MEREC and
MEREC-ROC methods were used to calculate
criteria weights, the average Spearman’s rank
correlation coefficient among the MCDM methods
was 0.7333. This result indicates that in this specific
case, the MEREC-ROC method is equivalent to the
MEREC method. Therefore, while Case 1 and Case 3
showed that MEREC-ROC and MEREC are equally
effective, Case 2 demonstrated that MEREC-ROC
has an advantage over MEREC. This provides
preliminary evidence suggesting that employing the
MEREC-ROC method for determining criteria
weights offers advantages over the MEREC method.
Nevertheless, to enhance the generalizability of this

conclusion, one more illustrative example warrants
investigation.

4.4. Case 4: Ranking of Gear Manufacturing
Materials

Table 13 presents the compiled information for
eight types of gear manufacturing materials,
symbolized as MG1 to MGS8, respectively. Each
alternative is specified by six beneficial criteria
(Type B criteria, C1 to C6) and one non-beneficial
criterion (Type C criterion, C7) [57].

Following a similar procedure to Case 1, the
criteria  weights, alternative rankings, and
Spearman’s rank correlation coefficients between
the methods were calculated, as summarized in
Tables 14-16.

Table 13. Characteristics of gear manufacturing materials [57]

C1 C2 Cc3 Cc4 C5 C6 Cc7
Materials tensile elongation hardness meltcmg stiffness Impact cost
strength point toughness
B B B B B B C
MG1 780 18 55 635 229 880 22000
MG2 880 15 50 735 225 390 30000
MG3 930 13 45 785 269 590 31000
MG4 980 15 45 785 217 600 22000
MG5 980 12 45 835 250 950 24000
MG6 1080 12 50 930 220 960 22000
MG7 885 12 40 685 195 970 21000
MGS8 750 12 45 400 179 940 20000
Table 14. Criteria weights in case 4
Weight method C1 C2 C3 C4 C5 C6 C7
0.1576 0.1700 0.1624 0.1089 0.1533 0.1021 0.1456
MEREC Rank
3 1 2 6 4 7 5
MEREC-ROC 0.1561 0.3704 0.2276 0.0442 0.1085 0.0204 0.0728
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Table 15. Alternative rankings and Spearman’s rank correlation coefficients between MCDM methods with MEREC

weights (Case 4)

Type SAW TOPSIS PIV ROV RAM
Rank
MG1 2 1 2 1 2
MG2 7 7 7 6 7
MG3 6 6 6 5 5
MG4 4 4 4 4 4
MG5 3 3 3 3 3
MG6 1 2 1 2 1
MG7 5 5 5 7 6
MG8 8 8 8 8 8
Spearman coefficient
SAW - 0.9762 1 0.9048 0.9762
TOPSIS - 0.9762 0.9286 0.9524
PIV - 0.9048 0.9762
ROV - 0.9524
RAM -
Average: 0.9548

Table 16. Alternative rankings and Spearman’s rank correlation coefficients of each pair of MCDM approaches using

MEREC-ROC weights (Case 4)

Type SAW TOPSIS PIV ROV RAM
Rank
MG1 1 1 1 1 1
MG2 4 3 4 3 3
MG3 6 5 6 6 6
MG4 2 2 2 2 2
MG5 5 6 5 5 5
MG6 3 4 3 4 4
MG7 7 7 7 7 7
MG8 8 8 8 8 8
Spearman coefficient
SAW - 0.9524 1 0.9762 0.9762
TOPSIS - 0.9524 0.9762 0.9762
PIV - 0.9762 0.9762
ROV - 1
RAM -
Average: 0.9762

It is also observed that when using the MEREC
method for weighting criteria, the lowest
Spearman’s rank correlation coefficient is 0.9048,
found between SAW and ROV, and between PIV and
ROV. Conversely, when the MEREC-ROC method is
employed for criteria weighting (Table 16), the
lowest Spearman’s rank correlation coefficient is
0.9524, observed between SAW and TOPSIS, and
between TOPSIS and PIV. Thus, from this
perspective, the MEREC-ROC method exhibits an
advantage over the MEREC method. Notably, the

average Spearman’s rank correlation coefficient
among the methods is 0.9762 if the MEREC-ROC
method was used to calculate the weights, which is
also significantly higher than the 0.9548 obtained
with the MEREC method. This result firmly
establishes that, in this case as well, the MEREC-
ROC method outperforms the MEREC method.

To facilitate a review of the four conducted case
studies, their fundamental information has been
aggregated in Table 17.
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Table 17. Basic information of the conducted case studies

The Average Spearman’s rank
The Total The number | number of N correlation coefficient
Case | number of number of beneficial non- The application
. . . . domain MEREC MEREC-ROC
alternatives | of criteria criteria beneficial . ]
o weight weight
criteria
1 4 4 3 1 cutting fluid 0.9200 0.9200
2 7 5 4 1 Robot 0.9214 0.9321
3 6 6 3 3 Wood Planer 0.7333 0.7333
4 8 7 6 1 Gear Manufacturing | g54g 0.9762
Material

From four above case studies, it can be seen that
although many factors (such as the number of
ranked alternatives, to total number of criteria, the
number of Type B and Type C criteria, the field of
application) were different between the cases, but
the cases 2 and 4 showed consistently more
effective of the MEREC-ROC method than the
MEREC method at ensuring the stability of
alternative rankings when evaluated by different
MCDM methods, while the cases 1 and 3 showed
the equally effective of the both methods.
Therefore, it can be concluded that, overall, using
the MEREC-ROC method to calculate criteria
weights provides a greater advantage compared to
the MEREC method.

Although the overall analysis indicates that
employing the calculated weighting of the MEREC-
ROC method for criteria weighting ensures higher
ranking stability of alternatives when applying the
various MCDM methods to rank compared to the
use of the MEREC method alone, a sensitivity
analysis is necessary for a comprehensive
evaluation of the differentiation between MEREC-
ROC and MEREC. The subsequent section will
perform a sensitivity analysis for each of the four
conducted case studies.

5. SENSITIVITY ANALYSIS

Sensitivity analysis can be performed in several
ways, such as by changing the weights of the
criteria, altering the number of alternatives to be
ranked, adjusting the number of criteria used to
evaluate each alternative, or modifying the data
normalization method [58,59]. In this study, for
each case, the sensitivity analysis was conducted by
removing a specific alternative from the list of those
to be ranked [60]. To do the comparison objectively
of two methods, MEREC-ROC and MEREC, in each
case, an alternative was also selected randomly to
remove. In this study, for Case 1, the last alternative
(CF4) was removed from the four ones; for Case 2,
alternative 4 (RB4) was removed from the seven
ones; for Case 3, alternative 3 (WP3) was removed
from the six ones; and for Case 4, the first one
(MG1) was removed among the eight alternatives.

Arranging the order of the remaining
alternatives and the calculation of Spearman’s rank
correlation coefficients in every case were
performed analogously to the procedures described
in Section 4. Tables 18-21 summarize the
Spearman’s rank correlation coefficient data for
each scenario.

Table 18. Spearman’s rank correlation coefficients for case 1 after removing CF4

Method MEREC MEREC-ROC
TOPSIS PIV ROV RAM TOPSIS PIV ROV RAM
SAW 1 1 0.5 1 1 1 0.5 1
TOPSIS 1 0.5 1 1 0.5 1
PIV 0.5 1 0.5 1
ROV 0.5 0.5
Average 0.8 0.8
Table 19. Spearman’s rank correlation coefficients for case 2 after removing RB4
Method MEREC MEREC-ROC
TOPSIS PIV ROV RAM TOPSIS PIV ROV RAM
SAW 1 0.9429 | 0.8857 | 0.9429 0.9643 1 0.9429 | 0.9429
TOPSIS 0.9429 | 0.8857 | 0.9429 0.9429 1 0.8286
PIV 0.8286 1 0.9429 | 0.9429
ROV 0.8286 0.8286
Average 0.9200 0.9336
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Table 20. Spearman’s rank correlation coefficients for case 3 after removing WP3

Method MEREC MEREC-ROC
TOPSIS PIV ROV RAM TOPSIS PIV ROV RAM
SAW 0.7000 0.9000 | 0.7000 | 0.9000 0.7000 1.0000 | 0.9000 | 0.9000
TOPSIS 0.4000 | 0.3000 | 0.9000 0.7000 | 0.4000 | 0.9000
PIV 0.9000 | 0.7000 0.9000 | 0.9000
ROV 0.6000 0.7000
Average 0.6500 0.7667
Table 21. Spearman’s rank correlation coefficients for case 4 after removing MG1
MEREC MEREC-ROC
Method
TOPSIS PIV ROV RAM TOPSIS PIV ROV RAM
SAW 0.9286 0.9643 | 0.8571 1 0.9643 1 0.9286 1
TOPSIS 0.9643 | 0.7143 | 0.9286 0.9643 | 0.8929 | 0.9643
PIV 0.8214 0.9643 0.9286 1
ROV 0.8571 0.9286
Average 0.9000 0.9571

Observing the data in Tables 17-21 reveals that
for Case 1, for Case 1, even with the removal of CF4,
the MEREC-ROC and MEREC methods continue to
exhibit similar performance, consistent with the
findings before the removal (refer back to Section
4.1). For the three other cases, employing MEREC-
ROC for the criteria weights also yields a higher
average Spearman’s rank correlation coefficient
compared to using MEREC for criteria weighting.
This confirms the excellent effectiveness of MEREC-
ROC in comparison to MEREC in these three cases.

Based on the collective results obtained, a
robust conclusion can be drawn: the ranking
stability of alternatives when evaluated by different
MCDM methods is enhanced when the MEREC-ROC
method is used for criteria weighting compared to
using the MEREC method alone.

This study introduces a new method called
MEREC-ROC, which leverages the strengths of two
component methods: the objective weighting of the
MEREC method and the subjective weighting of the
ROC method. This represents an innovative
discovery for creating a hybrid weighting method
that combines both objective and subjective
factors. The goal is to ensure high stability in the
ranking of alternatives when they are evaluated
using various MCDM methods.

6. CONCLUSION

Calculating the weights for the criteria is a crucial
task in solving MCDM problems. Using an objective
method to determine these weights can diminish
the role of experts in the decision-making process,
sometimes leading to undesirable outcomes.
Conversely, relying on subjective methods for

weighting can easily introduce errors stemming
from a decision maker’s personal experience or
their bias towards a particular criterion. This study
combines the MEREC objective weighting method
with the ROC subjective weighting method to form
a hybrid approach called the MEREC-ROC weighting
method. From a series of evaluations, including a
case-by-case sensitivity analysis, it can be verified
that the ranking of alternatives by different MCDM
methods will be more stable if using the MEREC-
ROC method to calculate criteria weights instead of
using the MEREC method alone.

The hybrid MEREC-ROC weighting method
proposed in this study represents a judicious fusion
of MEREC and ROC, yielding a valuable technique
that contributes to the existing repertoire of
weighting ones to contribute to solve MCDM issues.

In this investigation, the efficacy of MEREC-ROC
has been demonstrated to be superior to that of
MEREC. However, the achieved results are confined
to specific case studies involving the ranking of
industrial equipment and materials. The advantages
of MEREC-ROC over MEREC are anticipated to
extend to other domains as well. Nevertheless, this
expectation warrants empirical validation in
subsequent research endeavors.

This study has primarily compared the
effectiveness of MEREC-ROC against MEREC in
scenarios where the elements within the decision
matrix are concrete numerical values. Future
research should extend this comparison to
situations where the decision matrix incorporates
fuzzy sets and rough analysis.
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