Journal Menu

Archive

Last Edition
Journal information

Vol.1, No.1, 2022: pp.28-34

TRIBOLOGICAL BEHAVIOR OF ALUMINUM COMPOSITES USING TAGUCHI DESIGN AND ANN

Authors:

Blaža Stojanović

,

Radoslav Tomović

,

Sandra Gajević

,

Jelena Petrović,

Slavica Miladinović

Received: 15.12.2021.
Accepted: 03.03.2022.
Available: 31.03.2022.

Abstract:

In this paper is presented the tribological behavior of A356-based aluminum composites using Taguchi design. Testing of tribological characteristics of aluminum composites was done on a tribometer with block on disc contact geometry. Composite materials were obtained by compocasting. The orthogonal matrix L18 is used to form the experimental design using the Taguchi method. The tribological characteristics of the aluminum composite reinforced with SiC (A356/10 wt.% SiC) were compared to the base material A356 for three sliding speeds (0.25 m/s; 0.5 m/s and 1.0 m/s), three values of normal load (10 N, 20 N and 30 N) and sliding distance of 150 m under lubrication conditions. ANOVA analysis showed that the least wear has a composite material at a load of 10 N and at sliding speed of 0.25 m/s.

Keywords:

A356, aluminum, composite, wear, Taguchi design, ANOVA

References:

[1] A. Venc, Tribology of the Al–Si alloy based MMCs and their application in automotive industry, in: L. Magagnin (Ed.), Reference Module in Engineered metal matrix composites: forming methods, material properties and industrial applications. Nova Science, New York, 127-166.
[2] K.K. Chawla, Metal matrix composites, Composite materials. Springer, New York, 2012, 197-248.
[3] B. Stojanovic, L. Ivanovic, Application of aluminium hybrid composites in automotive industry. Tehnički vjesnik, 22(1), 2015: 247- 251. https://doi.org/10.17559/TV20130905094303
[4] B. Stojanovic, M. Bukvic, I. Epler, Application of aluminum and aluminum alloys in engineering. Applied Engineering Letters, 3(2) 2018: 52-62. https://doi.org/10.18485/aeletters.2018.3.2.2
[5] K.K. Ekka, S.R. Chauhan, Varun, Dry sliding wear characteristics of SiC and Al2O3 nanoparticulate aluminium matrix composite using Taguchi technique. Arabian Journal for Science and Engineering, 40, 2015: 571-581.
https://doi.org/10.1007/s13369-014-1528-2
[6] S. Ghosh, P. Sahoo, G. Sutradhar, Tribological Performance Optimization of Al-7.5% SiCp Composites Using the Taguchi Method and Grey Relational Analysis. Journal of Composites, 2013, 2013: 1-9. https://doi.org/10.1155/2013/274527
[7] S. Veličković, B. Stojanović, M. Babić, I. Bobić,Optimization of tribological properties of aluminum hybrid composites using Taguchi design. Journal of composite materials, 51(17), 2017: 2505-2515. https://doi.org/10.1177/0021998316672294
[8] B. Stojanovic, J. Blagojevic, M. Babic, S. Velickovic, S. Miladinovic, Optimization of hybrid aluminum composites wear using Taguchi method and artificial neural network. Industrial Lubrication and Tribology, 69(6), 2017: 1005-1015. https://doi.org/10.1108/ILT-02-2017-0043
[9] B. Stojanovic, A. Vencl, I. Bobic, S. Miladinovic, J. Skerlic, Experimental optimisation of the tribological behaviour of Al/SiC/Gr hybrid composites based on Taguchi’s method and artificial neural network. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 2018: 311. https://doi.org/10.1007/s40430-018-1237-y
[10] B. Stojanovic, S. Gajevic, N. Kostic, S. Miladinovic, A. Vencl, Optimization of parameters that affect wear of A356/Al2O3 nanocomposites using RSM, ANN, GA and PSO methods. Industrial Lubrication and Tribology, 74 (3), 2022: 350-359. https://doi.org/10.1108/ILT-07-2021-02622022
[11] K. Paramasivam, A. Vijay, M. Sambathkumar, Investigation of optimum process parameter of lost foam casting of A356/SiC metal matrix composite. Materials Today, 47(14), 2021: 4801-4806. https://doi.org/10.1016/j.matpr.2021.06.035
[12] S. Donthamsetty, P. S. Babu: An ANN Approach for Predicting the Wear Behavior of Nano SiC-Reinforced A356 MMNCs Synthesized by Ultrasonic-Assisted Cavitation. In: Reddy, A., Marla, D., Favorskaya, M.N., Satapathy, S.C. (eds) Intelligent Manufacturing and Energy Sustainability. Smart Innovation, Systems and Technologies, Springer, Singapore, 2021: 113-124. https://doi.org/10.1007/978-981-33-4443-3_12
[13] A. Vencl, I. Bobic, S. Arostegui, B. Bobic, A. Marinkovic, M. Babic, Structural, mechanical and tribological properties of A356 aluminium alloy reinforced with Al2O3, SiC and SiC+ graphite particles. Journal of alloys and compounds, 506(2), 2010: 631-639. https://doi.org/10.1016/j.jallcom.2010.07.028
[14] R.K. Ranjit, A primer on the Taguchi method. Society of Manufacturing Engineers, 2010.
[15] G. Taguchi, Taguchi on robust technology development: bringing quality engineering upstream. ASME Press, New York, 1993.
[16] A. Bagchi, S. Saravanan, G. S. Kumar, G. Murugan, K. Raghukandan, Numerical simulation and optimization in pulsed Nd: YAG laser welding of Hastelloy C-276 through Taguchi method and artificial neural network. Optik, 146, 2017: 80-89. https://doi.org/10.1016/j.ijleo.2017.08.082
[17] M. Senthilkumar, S. Saravanan, S. Shankar, Dry sliding wear and friction behavior of aluminum–rice husk ash composite using Taguchi’s technique. Journal of Composite Materials, 49(18), 2015: 2241-2250.
https://doi.org/10.1177/0021998314545185
[18] A. Sharma, M. Garg, S. Singh, Taguchi optimization of tribological properties of Al/Gr/B4C composite. Industrial Lubrication and Tribology, 67(4), 2015: 380-388. https://doi.org/10.1108/ILT-10-2014-0099
[19] P.K. Padhi, A. Satapathy, Analysis of sliding wear characteristics of BFS filled composites using an experimental design approach integrated with ANN. Tribology Transactions, 56(5) 2013: 789-796.
https://doi.org/10.1080/10402004.2013.798448
[20] B. Stalin, P.R. Kumar, M. Ravichandran, M.S. Kumar, M. Meignanamoorthy, Optimization of wear parameters using Taguchi grey relational analysis and ANN-TLBO algorithm for silicon nitride filled AA6063 matrix composites. Materials Research Express, 6(10), 2019: 106590. https://doi.org/10.1088/2053-1591/ab3d90
[21] Z. Zhang, K. Friedrich, K. Velten, Prediction on tribological properties of short fibre composites using artificial neural networks. Wear, 252(7-8), 2002: 668-675. https://doi.org/10.1016/S0043-1648(02)00023-6

© 2023 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Volume 2
Number 4
December 2023.

 

Loading

How to Cite

B. Stojanović, R. Tomović, S. Gajević, J. Petrović, S. Miladinović, Tribological Behavior of Aluminum Composites Using Taguchi Design and ANN. Advanced Engineering Letters, 1(1), 2022: 28–34.
https://doi.org/10.46793/adeletters.2022.1.1.5

More Citation Formats

Stojanović, B., Tomović, R., Gajević, S., Petrović, J., & Miladinović, S. (2022). Tribological Behavior of Aluminum Composites Using Taguchi Design and ANN. Advanced Engineering Letters1(1), 28–34. https://doi.org/10.46793/adeletters.2022.1.1.5

Stojanović, Blaža, et al. “Tribological Behavior of Aluminum Composites Using Taguchi Design and ANN.” Advanced Engineering Letters, vol. 1, no. 1, 2022, pp. 28–34, https://doi.org/10.46793/adeletters.2022.1.1.5.

Stojanović, Blaža, Radoslav Tomović, Sandra Gajević, Jelena Petrović, and Slavica Miladinović. 2022. “Tribological Behavior of Aluminum Composites Using Taguchi Design and ANN.” Advanced Engineering Letters 1 (1): 28–34. https://doi.org/10.46793/adeletters.2022.1.1.5.

Stojanović, B., Tomović, R., Gajević, S., Petrović, J. and Miladinović, S. (2022). Tribological Behavior of Aluminum Composites Using Taguchi Design and ANN. Advanced Engineering Letters, 1(1), pp.28–34. doi: 10.46793/adeletters.2022.1.1.5.